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Abstract

This paper reviews some attempts that exploit a phe-
nomenon, also known as motion parallax, to estimate
the distance of closest approach of a moving object.
Despite their success, the existing evolutionary meth-
ods lack some desirable properties, such as reasonable
scalability and online learning. To overcome these
practically-relevant limitations, this paper proposes a
new model that is based on Hebbian learning. Due
to its scalability and online learning capabilities, this
model is especially suited to mobile robots.

1. Introduction

Since the beginning of the 90ies a new research area has
emerged, for which Brooks has coined the term new artifi-
cial intelligence (new AI for short). New AI aims at under-
standing (natural) intelligence and its underlying mechanisms
by building systems that exhibit “intelligent” behavior (R.
A. Brooks, 1991a, 1991b, R. Pfeifer and C. Scheier 1999).
These systems are often realized as mobile robots, which are
supposed to operate in dynamically changing, partially un-
known environments without any human control (that is why
they are attributed autonomous). New AI prefers a synthetic
approach, i.e., understanding by building. In order to reach
its research goals, new AI draws a significant amount of in-
spiration from natural systems. It therefore often investigates
(biological) hypotheses and aims at validating them in simu-
lation or on particularly-designed robots.

Even though the ultimate goal is to build physical robots,
most attempts resort to simulation for obvious limitations of
evolvable hardware available today (see, for example, the
conference series Simulation of Adaptive Behavior), A very
nice exception is the eyebot on which Lichtensteiger and
Eggenberger have evolved simplified insect eyes (L. Lichten-
steiger and P. Eggenberger, 1999). Section 2. briefly explains
how Lichtensteiger and Eggenberger used evolutionary algo-
rithms to evolve the eye’s morphology that allows the robot
to consistently estimate the distance of closest approach. De-
spite its successes, previous research (L. Lichtensteiger and P.
Eggenberger, 1999, R. Salomon and L. Lichtensteiger, 2000)
has indicated that this approach is practically limited to about

10-20 sensors, since the evaluation of a particular sensor dis-
tributions requires approximately one minute on a physical
robot. Evolutionary algorithms normally generate a number

�
offspring per generation. Since every offspring has to be

evaluated (in real-world experiment), evolutionary methods
require a significant amount of experimentation time.

Furthermore, evolutionary algorithms, like
backpropagation-type learning procedures, require a
preselected training set for offline learning and thus lack
any online adaptation capabilities. By way contrast, living
creatures are inherently adaptive, scale very well over their
visual system, and apparently do not suffer from overlearning
effects (that much). Section 3. proposes a new, simple model
that achieves these design goals to a large extent by using a
simple Hebbian-based learning rule. Section 3. also discusses
some of the model’s basic properties.

Sections 4. and 5. discuss the methods and results of some
representative experiments. The results show that the pro-
posed learning method is able to train the network model such
that it can consistently determine the robot’s speed and thus
can determine the distance of closest approach. Section 6.
concludes with a brief discussion.

2. Background and Previous Research

This section summarizes previous research and includes the
description of the robot, its eye, the neural network controller,
as well as a phenomenon, called motion parallax.

2.1 The Eyebot

Inspired by biological evidence (T. S. Collett, 1978, N.
Franceschini, J. Pichon, and C. Blanes, 1992, G. A. Horridge,
1978), Lichtensteiger and Eggenberger (1999) constructed
the eyebot (Figure 1) to model the eye of an insect, such as the
house fly. It consists of a chassis, an on-board controller, and
sixteen independently-controllable facet units, which are all
mounted on a common vertical axis. A facet unit (Figure 2)
basically consists of the sensor, a thin tube, two cog-wheels,
a motor, and a potentiometer. By means of the cog-wheels,
the motor can position the facet within a range of about 200
degrees, and the potentiometer provides feedback about its



Figure 1: The “eyebot” consists of a chassis, an on-board controller,
and sixteen independently-controllable facet units (see Figure 2),
which are all mounted on a common vertical axis.

actual position, i.e., its angle ��� . The thin opaque tube is
used to reduce the sensor’s aperture to about two degrees.
These tubes are the primitive equivalent to the biological om-
matidia (T. S. Collett, 1978, N. Franceschini, J. Pichon, and
C. Blanes, 1992, G. A. Horridge, 1978). It should be noted
that such a low-cost construction is subject to several impre-
cisions and tolerances, which might be sensed as noise during
operation.

2.2 Motion Parallax: A Mathematical Descrip-
tion

Figure 3 sketches how a phenomenon, also known as motion
parallax, can be utilized to avoid obstacles. Let us assume that
the compound eye, presented as the observer

�
, is at a fixed

position. If the obstacle � is moving at constant speed � ,
the observer views the obstacle under different angles ���	�
��� ,
and �� at different time steps �
������� , and �� . Let � denote
the vector from observer

�
to obstacle � and let ��� denote

the component of � that is perpendicular to vector � . For the
distance � of closest approach, the following relation holds

����������� �"! (1)

Since ���#�$�%���&� � , the angular velocity '(�*)� with which
the image of � moves through the visual field of the observer
is

'+� ���
� �

�,���&� �
� ! (2)
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Figure 2: The robot’s facet basically consists of the sensor (the photo
diode), a thin tube, two cog-wheels, a motor, and a potentiometer.
By means of the cog-wheels, the motor can position the facet within
a range of about 200 degrees, and the potentiometer provides feed-
back about its actual position.

If the agent can estimate the velocity � and can measure both
� and ' , it can calculate its distance � to the obstacle at any
time. Solving eq. (2) for � and substituting into eq. (1) leads
to

�-� �
' ���&�

� �"! (3)

Let us assume that the agent uses some sensors each of
which can detect the obstacle if it appears under a particular
angle � . The agent can then estimate the angular velocity
'+�.�/��01����2435��013-� by the change of � per time interval:

��� �6 �7��0��7��8 �����
� �924� 3:�35� ���&�

� �"! (4)

Similar to biological systems, an agent with ; facets can
estimate '<2=35��013-� by utilizing a simple neural network,
which consists of ; input units >@? and ; - A output units >@B .
As can be seen in Figure 3, each output unit > B� is connected
to two input units >C?� and >C?��D�� each of which is in turn con-
nected to one facet with all connections being topology pre-
serving, i.e., neighboring facets signal to neighboring inputs,
which in turn connect to the same output unit. Furthermore,
each input unit >C?� has an associated time constant E � during
which the unit remains active after it has been triggered by an
appropriate input.

Each triple > ?� , > ?��D�� , and > B� constitutes a motion sen-
sor. An input unit >C?� is activated by the appearance of a
sufficiently-high “dark-to-bright” stimulus. Then, this unit
remains active during the decay time EF� . If also the neighbor-
ing input unit >C?�&D�� becomes active during this time interval,
the output unit >CB� is triggered (due to its “and” operation). If
however, the stimulus moves too slowly, the first input neuron
>C?� becomes inactive and the output unit >@B� is not triggered.
Depending on its relative velocity � , the agent may trigger
an appropriate avoidance action if the sum of active output
units exceeds a critical threshold, which can be, for exam-
ple, dependent on � (see also eq. (4)). For an agent to be
successful, it is essential to avoid obstacles only if necessary,
since an agent that constantly avoids obstacles is rather use-
less. Therefore the parameter EF� determines a critical speed
between two neighboring sensors.
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Figure 3: Left: due to their small aperture of about two degrees, the insect eye’s facets recognize a moving object at different times ��������������	 .
With some units that maintain their activity during a time period 
 after stimulation and output units that perform an and-operation over
neighboring input pairs, a neural network is able to detect too small a distance of closest approach to an obstacle. Right: the angular velocity� under which an obstacle � is seen equals ������������������������� and depends on the actual angle � leading to a distance of closest
approach  "!#�$���&%'�����)(*� .

An agent is in principle able to calculate the distance � of
closest approach by utilizing only two facets. However, this
calculation would be limited to a particular angle of its visual
field, which would be too restrictive for real-world mobile
robots. By using a compound eye, the agent is able to antic-
ipate potential collisions regardless of the angle under which
the object is seen. That is, two compound eyes would provide
an agent with an almost 360 + view.

2.3 Previous Results

Lichtensteiger and Eggenberger (1999) used a simple neural
network with all weights being constant and equal and ap-
plied evolutionary algorithms to evolve a suitable sensor dis-
tribution, i.e, the different angles � , such that a predefined
fitness function , �.- � 6�6 ���&D��0/ ��� 8&/ E 8 � minimizes. Even
with significantly improved algorithms (R. Salomon and L.
Lichtensteiger, 2000), the results clearly indicate that this ap-
proach is practically limited to about 10-20 sensors due to the
experimentation time and convergence problems.

Alternatively, the sensor distribution could be fixed and an
algorithm like backpropagation could be applied to train the
individual time delays E � . However, this approach as well as
using evolutionary algorithms require the preselection of suit-
able training cases and offline learning, which immediately
excludes any suitable online adaptation to changing condi-
tions, such as broken sensors or a tilted camera.

3. The Model

The left-hand-side of Figure 4 shows the general architecture.
A high-resolution input device, such as a CCD camera, feeds

its activation to a speed sensor module. This module in turn
communicates with a motor (sub-) system via reciprocal con-
nections. And the motor system has direct connections to the
actual actuators. The remainder of this section is devoted to
some of the model’s architectural details, including the actual
wiring, the learning procedure, as well as some of the model’s
properties.

3.1 The Architecture

As has already been discussed in the background section, an
object passing by the input device activates the input units 1
for a constant duration 2 at different time steps � � . Now, let 3
denote units of the input device and let 4 denote units of the
speed sensor module. Every speed unit 4�� directly connects
to exactly one (randomly chosen) input unit 3�5 with the index6

referencing to the speed unit’s position (relative to the input
device). Furthermore, all speed units also connect the neigh-
borhood of their reference input unit. For example, speed unit
4@� connects to the reference input unit 387 and also connects
to 3�7�9;: ! ! !<3�7�D�: for some =?>A@ . Except for the reference
connection, all signals are delayed by E and have to pass a
gate. The time delays E may vary across all connections, and
the gate has to be activated by the reference unit. That is, a
speed sensor 4 � receives delayed signals from the input de-
vice only during the time window defined by the reference
unit 3 7 .

It should be noted here that all sensor units 4 � are treated
in the same way. For readability purposes, these neurons are
arranged on a grid with columns and rows representing ref-
erence position � and speed, respectively. All speed sensors
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Figure 4: This figure sketches the model’s architecture with increasingly more details when going from left to right. The left-hand-side shows
the overall architecture, in which a high-resolution input device (e.g., a CCD camera) feeds its activation into a speed sensor module. This
module communicates with a motor (sub-) system ]ia reciprocal connections. The middle part depicts some selected neurons, and in the
right-hand-side, the figure shows the wiring between a particular speed sensor and its incoming signals it receives from the input device. For
further detail, see text.

belonging to the same speed value, communicate with corre-
sponding units in the motor system.

3.2 The Learning Rule

Without loss of generality, the model makes the following
four assumptions:

1. The input unit’s activation 3 is either 0 or 1.

2. The gate either passes the incoming activation or sets it to
0.

3. If an input sensor views an object it sets its activation to 1
for the duration 2 .

4. The activation of the speed sensor units is bounded by
@��"4 � � A .

The operation of the speed sensor units is inspired by bi-
ological integrate-and-fire neurons. For each connection, 4 �
first calculates the overlap � ��5 of its reference signal ( 3 7 ) and
the incoming delayed signals ( 3 5��� 7 ). More formally, the over-
lap is given by � ��5 � 6 A	0 2 8�� � 3 7

6 ��8 3 5 6 ��8��7� . Due to the di-
vision by the signal duration constant 2 , the overlap is nor-
malized to @��	�1� 5
� A . To sharpen the edges, the overlap
is modified by (with � denoting an arbitrarily-chosen, small,

positive constant):

��� 5��
� � 6 � � 5�� � 8&/ � ���� ��� ! (5)

If activated by the reference signal 387 , the speed sensor unit
4@� then applies the following, rather generic Hebbian-based
learning rule (for some properties, see below):

� � 5 � � ��5 ��� ����5 / 6 � 01��8 � ��5 � (6)

with � � 5 denoting the connection (weight) connecting input
unit 3�5 with speed sensor unit 4 � , � denoting a learning con-
stant, and � denoting an unlearning constant.

3.3 Model Properties and Behaviors

The learning rule, as defined by eq. (6) has the following
properties: due to the unlearning constant � , the connection
weight is bounded by � � 5�� ��� �� 5 , and since � ���5 � A , the
relation � ��5 � � holds. Due to this bounding, the repetitive
application of the learning rule eq. (6) lets the connections
approach this bound, i.e.,

� ��� ����� � ��5 � � ���5 . In other words,
the network’s connections assume values proportional to their
incoming overlap values during the time window defined by
the reference signal 3�7 . Without loss of generality, the un-
learning constant can be set to � =1.



The learning constant � in eq. (6) determines the slope with
which the final values are approached; it does not influence
the final values. With smaller � values, the learning proce-
dure consumes more time to saturate but is less sensitive to
changing environmental conditions. Large � values have the
opposite effect.

Like the high-resolution input device, the speed sensor
module features very many units, to which learning applies as
described above. The speed sensor module arranges all units
on a grid with the � and � axes representing position � and
speed, respectively. All units in a specific row are responsible
for the same speed and are collectively coupled with corre-
sponding units in the motor system. Within a specific row, all
speed sensor units connect to different reference input units.

In the very beginning, all connections are initialized to
some, randomly-chosen values. When the robot is moving
with a particular speed � , the operating motor system acti-
vates the appropriate row of the speed sensors. When these
active speed sensor units receive their reference signal (what
they do at different time steps), they update their connections� � 5 by applying learning rule (6). During the initial leaning
(exploration) phase, the robot repetitively moves with differ-
ent speeds in order to train all speed sensor units.

It should be mentioned here that the robot itself selects a
particular moving speed by means of its motor system, and
that the visual system organizes itself by evaluating visual
stimulation it receives as a result of the agent-environment
interaction (i.e., exploiting the agent’s morphology).

After the initial learning phase, the speed sensor units may
also by activated by the following activation rule:

4 � � � ���5
� ��5

- 5 � � 5 � (7)

with � ���5 denoting the modified overlap with the reference sig-
nal as described above. As cn be seen from eq. (7), the speed
sensor unit integrates all incoming delayed signals during the
time window given by the reference signal 387 . This inte-
gration is weighted by the � ��5 ’s and then normalized. This
normalization has the effect that the parameter � has no ef-
fect and that only slightly varies with changing configurations
(i.e., signal duration 2 and number of connected inputs).

The main idea behind this model is as follows: Since all
speed sensor units are treated in the same way and connected
only to some local region of the input device, the model al-
lows for simple scaling over very many input units of high-
resolution sensor devices.

4. Methods

Unless otherwise stated, all experiments have used the fol-
lowing parameter settings: signal duration 2 =2, learning rate
� =0.01, unlearning rate � =1, overlap-modification parameter
� =0.001 (see, eq. (5)). During the initial training phase, the
speed was set to values, such that the object travels about one
sensor per time unit.

5. Results

This section presents some results, obtained with a com-
puter simulation. In order to be comprehensible, this sec-
tion presents figures with only a few units. The presentation
of a simple learning process of one speed sensor unit would
merely demonstrate the convergence property of equation (6),
and is thus omitted here.

Figure 5 demonstrates the model’s adaptation capability.
After the network has learned an initial input distribution,
which has been arbitrarily chosen for illustration purposes,
the network can easily adapt to input changes. In the figure,
the input values from position 0-15 have been changed, and
the adaptation process takes about 140 epochs. It can be seen
that the model just adapts to the changed input.

As Section 3. has already discussed, the speed sensor mod-
ule employs neural populations for different speed values � .
Figure 6 shows five different units that are particularly trained
for varying speeds ������@ ! ��� ��@ ! 	 A7� A�! @$@ � A7!�A @ � A�! 
$@�� . In this
test case, an object passes by with speed �5�<A�! @ , and the fig-
ure shows how the units’ activations change over time (each
tic marks a particular test point). It can be clearly seen that the
units’ responses decrease with the difference between both
the test and its inherent (trained) speed. In this figure, the
� and � axes represent time and activation, respectively. It
should be noted that the depicted units have been particularly
chosen, such that a moving object activates them at different
time steps (otherwise it would became impossible to read the
figure).

Figure 6 suggests, as has been expected, that the speed sen-
sor units react quite sensitively to a passing object. The next
experiment investigates the sensor module’s behavior with re-
spect to varying object speeds. To this end, an object is pass-
ing the input device several times each time with a different
speed �7��� ! ! ! ��� : . For each pass, the system monitors the
activation of a set of selected speed sensor units 4�� and re-
members each unit’s maximal activation. These maximal ac-
tivations are then plotted in a graph. Figure 7 presents such a
graph with five selected units. It can be clearly seen that the
speeds are � � =0.77, � � =0.88, �  =1.00, �� =1.14, and ��� =1.30
units per time step. All units exhibit their maximal activation
(not necessarily 1 due to eq. (7)) at their particular training
speed, and are less active elsewhere. It is obvious that a sub-
sequent layer, e.g., another neural layer or a fuzzy controller,
can easily reconstruct the object’s/robot’s speed.

6. Discussion

This paper has proposed a new model to alleviate a particular
deficiency in the area of autonomous agents. The proposed
model allows the utilization of a high-resolution input device,
such as a CCD camera, by featuring a simple Hebbian-based
learning rule. This learning procedure has the following ad-
vantages over currently used methods: entire online learn-
ing without any need of preselecting any training pattern set,
straight forward scaling property by using only local informa-
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Figure 5: After the network has learned a certain input distribution (arbitrarily chosen for illustration purposes), it can adapt to a new
distribution (positions 0-15) within 140 epochs.

tion among units, and no overlearning deficiencies and thus
constant applicability with inherent adaptation properties.

The model’s design is largely inspired by biological obser-
vations. However, no claim is made that in turn, any part is
biological plausible or that any biological system is equiva-
lently working like the proposed model; it is a just a technical
application.

When setting up the system, the speed sensor module may
be equipped with as many units as desired, and then each has
to connected to a reference input sensor as well as the ref-
erence unit’s neighborhood. In the initial training phase, the
speed sensor units may be grouped to populations with each
population being responsible for a particular speed.

Future research will be devoted to the following steps: im-
plementation of the model on a physical robot and trying to
substitute the gate functionality that is activated by the refer-
ence signal, by more natural mechanism; this reference signal
is currently required, but substituting it would probably sim-
plify the model.
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