
Extensive Analysis of a Kad-based Distributed
Storage System for Session Data

Jan Skodzik, Peter Danielis, Vlado Altmann, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany

Tel./Fax: +49 (381) 498-7284 / -1187251
Email: {jan.skodzik;peter.danielis}@uni-rostock.de

Abstract—The P2P-based system for the distributed storing
of session data of Internet service providers’ access nodes
called P2P-based storage platform is presented. Session data
is continuously changing due to customers connected to access
nodes, i.e., it is highly volatile. However, it has to be stored
persistently as it is required for data forwarding, traffic filtering,
and deriving statistics. Failing access nodes must be able to
restore their data after reentering the network. Today, the session
data is stored in the access nodes’ flash memory, which is limited
in life time and size and intended for other purposes.

Contrary, the P2P-based storage platform allows to store
session data in the access nodes’ available RAMs connected
by the distributed hash table-based P2P network Kad. A Kad
network consisting of 8,000 access nodes for distributed storage
of session data is setup for simulation. The simulation results
show the traffic overhead to be minimal, linear scalability, and
prove the high availability of the stored session data.

Index Terms—P2P, Kad, Distributed Data Storing, Simulation,
Scalability.

I. INTRODUCTION

Session data (SD) is created at the access node (AN)
the customer is connected to via a physical port. This SD
provides information such as IP addresses, physical ports,
MAC addresses, and lease times of IP addresses. Internet
service providers (ISPs) must store the SD as it is required
for operational, administrative, and control tasks. SD changes
frequently due to the dynamic behavior of the customers
connected to the AN. Therefore, the memory for storing the
data is accessed frequently for rewriting.

A customer who connects to the Internet automatically
requests an IP address via the Dynamic Host Configuration
Protocol (DHCP). In addition, SD is permanently stored
and accessed on a regular basis as it is needed for data
forwarding and the configuration of the session filter of an AN.
Session filters block traffic from non-configured participants,
i.e., customers who have not requested an IP address. In the
case of the rebooting or crash of an AN, data must be reloaded,
i.e., the recovery of SD is necessary. The session filter is
reconfigured after the restoring of SD. Only after this recovery,
the customer has Internet access again. A restart of an AN
happens 2-3 times a week in the worst case, on average every 4
weeks, and at best once a year [1]. The ANs’ flash memories are

used in order to ensure the persistence of SD even in the worst
case. However, flash memory is limited in its availability and
the number of write cycles and is intended for other purposes
like storing configuration parameters of the AN. Flash memory
typically has a durability of 10,000 write cycles. An update of
SD happens every 15 min to 1 h so a write access becomes
necessary very often. Thus, the flash memory could already
fail after 104 days of being active [1].

Instead of flash memory, this paper proposes to use the
ANs’ available volatile random access memory (RAM) and
computation power. Unlike flash memory, the RAM can be
written almost an unlimited number of times. A distributed
hash table (DHT)-based Kad network allows the system to
connect and share the RAM of all ANs. Thereby, the Kad
network works as semi-permanent distributed memory for a
structured storage of the SD. Each AN shares its memory and
computation capacity with the participants in the Kad network.
After the restart or shutdown of an AN, the recovery of the
SD is performed by obtaining the necessary data from the
Kad network. SD must be available at a very high reliability.
Typically, the availability must have a probability of 99.999%.
Since data is stored in a distributed manner in the ANs’ RAM,
the availability must be ensured with appropriate mechanisms
as ANs can fail. The redundancy is kept low while ensuring
high data availability by using erasure resilient codes (ERCs)
[2]. Thus, the persistence of data is ensured.

The P2P-based storage platform (PSP) has been successfully
implemented as software prototype running on the ANs as
they provide sufficient resources. An average AN like, e.g.,
Freescale Semiconductor’s PowerQUICC II Pro has 40% of free
computing resources available. Of its 1 Gbyte RAM capacity,
400 Mbyte are available [1]. However, it is hardly possible to
build a test setup with several thousands of nodes [3]. Therefore,
a simulation model has been implemented to investigate the
availability of the data, scalability of the P2P network, and
the network utilization. The simulation model emulates the
realistic behavior of the nodes with failure events and a trace
of generated traffic by PSP due to exchanged data in the P2P
network. Below, the following main contributions are briefly
described:

• Briefly description of PSP.

• Determination of realistic environment parameters for the
simulation.

• Evaluation of simulation results regarding data availability,
scalability, and traffic overhead.

The remainder of this paper is organized as follows: Section
II contains a comparison of the proposed approach with related
work. Section III gives a brief description of PSP. The necessary
simulation parameters are derived in Section IV. Section V
evaluates simulation results before the paper concludes in
Section VI.

II. RELATED WORK

[4]–[9] propose to use DHT-based solutions for the dis-
tributed storage of data. In [4], globally distributed untrustwor-
thy servers shall be used. To ensure trustworthiness, special
measures have to be taken. In contrast, PSP renounces these
measures since ANs represent trusted entities.

Ribeiro et al. [5] present a DHT-based platform with a low
peer availability caused by high churn to realize persistent
data storage. The lookup complexity in this approach is
O(N/log2(N)) hops for each lookup. PSP takes advantage
of the Kad network since the lookup complexity of Kad is
O(log2b(N)), where b is the number of bits of the node ID
(hash value), which can be skipped with each lookup step.

b is set to a value of 4 for Pastry and 5 for Kademlia in
their original implementations. However, the average value for
b in Kad is 6.98 [10]. Therefore, Kad is optimal for PSP due
to its lookup performance [10]–[12].

In [6], the authors suggest a public data management system
for Web applications. The main focus is on data and service
integration and the enabling of functionality to process data in
the databases. In particular, the focus is on efficient database
queries. PSP focuses on enabling the automatic distribution
and collection of data without the need for complex requests.
Therefore, PSP can save additional computational effort.

This also applies to the approach in [7], which focuses
on a Pastry-based scalable storage platform for the storage
of recorded IP data streams. This approach mainly focuses
on improving the performance of complex search operations
for requests of the mentioned data streams. Druschel et al.
[8] describe a global Internet-based storage system consisting
of non-trusted nodes based on Pastry. To ensure high data
availability, the authors use simple data replication. In PSP,
Reed-Solomon (RS) codes are used to ensure high data avail-
ability with substantially less data redundancy. Additionally,
PSP uses the Kad network rather than Pastry as done in [7]
and [8]. Kademlia improves a design discrepancy of Pastry.
The Pastry routing distance metric is not necessarily the actual
numerical distance of the node IDs. Moreover, Pastry needs
two routing phases, which reduces its lookup performance
and requires a complicated formal analysis of the worst-case
behavior. Contrary, Kademlia uses the XOR routing metric,
which reduces this problem [11].

Toka et al. [13] deal with very large amounts of data with a
size of several Gbytes in a network with a high peer churn rate.
Additionally, the authors assume a network of heterogeneous

Access AreaCustomers Area Core Network Area

Access Node,
e.g., DSL Access

MultiplexerCustomers Broadband Remote
Access Server

Internet
Service
Provider

Flash Memory with
Session Data

Internet

Fig. 1. Access network with PSP node.

peers so that scheduling becomes relevant. These additional
scheduling algorithms have no significant influence if the nodes
are homogeneous in terms of bandwidth and connectivity
behavior like in PSP.

In [14], data sets are organized into redundancy groups.
Thereby, the focus is on high availability of data in P2P-based
applications with a high churn of nodes. This model is suited
better for P2P-based file sharing applications with a high rate
of migration of peers unlike the peers in PSP.

In contrast to the author’s approach, none of the presented
works uses available resources of trusted reliable infrastructure
to provide a storage platform for general data. Ye et al. [9]
provide a distributed storage platform of relatively trustworthy
peers with a focus on ensuring actuality of data and data
safety. PSP uses unique strings and an additional time to live
(TTL) value to ensure actual data. The TTL value depends
on the specific scenario and has to be modified in terms of
the validity of the data. There is no further overhead and
extra communication between the nodes in PSP. Ye et al.
needs additional servers to enable the concept of one-hop
routing. Therefore, each server stores the full routing table.
PSP renounces the use of central instances like servers as
single point of failures (SPoF) to achieve a fully scalable and
fault-resistant network.

III. PSP IN GENERAL

P2P technology in access networks: In Figure 1, a typical
access network is depicted. Access networks comprise so-
called ANs like IP Digital Subscriber Line Access Multiplexer
(DSLAM). PSP is located on these ANs. A decentralized
storage solution is desirable using available free resources
instead of using the limited flash memory to store the SD
in a centralized way. P2P technology has many beneficial
properties to realize a decentralized system efficiently. Apart
from being an application for file sharing, P2P is an innovative
networking paradigm. All ANs are peers with client and
server functionality and form a new logical overlay on top
of the existing topology. Furthermore, high scalability and
reliability are intrinsic properties of P2P networks, which can
be used without additional costs. Each AN contributes its
available resources to the decentralized storing platform PSP.
Consequentially, the P2P network itself becomes a shared

storage resource with the ANs sharing their available RAM
resources. Each AN stores only a part of the entire SD.
Additionally, the ANs share their computing power and the
network becomes a distributed computing resource. PSP uses
Kad as an implemented version of Kademlia. Kademlia uses
a DHT to route the communication and data. It is a self-
organizing DHT-based system, i.e., it does not require additional
external maintenance. By using Kad, PSP does not show any
SPoF so that high resistance against (Distributed) Denial of
Service attacks (D)DoS and network failures is given [11].
Redundant data storage is supported by Kad per se - so that a
higher reliability of the SD can be achieved. If one or more
ANs fail the data is still available with a high probability.
However, to achieve nearly 100% availability of SD in volatile
RAM, additional measures are necessary.

A. Achieving data availability of 99,999 %

A crucial aspect of data storage in general and SD in
particular is to ensure high data availability [2]. Especially,
in the case of distributed data storage, appropriate measures
have to be taken to guarantee a data availability of typically at
least Pd = 99.999 % even if parts of the distributed memory
system fail. The AN availability Pn is constant and can only
be improved by using more reliable hardware. Therefore,
increasing the data availability Pd is only possible by adding
redundancy. However, this will result in a higher amount of
data to be stored in the Kad network.

Data replication (DR) or ERCs are options to achieve a
high availability of the SD. The memory overhead factor S
represents the memory overhead regarding the original data
Dorg and the redundant data Dredundant (see Formula 1).

S =
Dorg +Dredundant

Dredundant
(1)

Due to memory limitations in hardware, S should be kept at a
minimum while ensuring a high data availability Pd. Therefore,
Pd and S are compared using DR and ERCs. Pd,DR if using
DR is described in Formula 2. Complete SD copies have to
be stored in the network without any encoding.

Pd,DR =

S−1∑
i=1

(
S − 1

i

)
P i
n(1− Pn)

S−1−i (2)

If ERCs are used, the data to be stored is split into m parts.
Subsequently, the generation of k coded chunks containing
information from all m chunks is carried out during an encoding
process, which requires the time TEncChunks. Overall, n =
m+ k chunks are generated representing the data. With any
m of these n chunks, an efficient ERC is able to restore
the original data, even if some chunks are missing [2]. The
availability of the data is represented by Formula 3.

Pd,ERC =

n∑
i=m

(
n

i

)
P i
n(1− Pn)

n−i (3)

In case of DR, S equates to 6 if Pd is 99.999 % and Pn

equals 90 % whereby this value for Pn would characterize

very unstable nodes. Contrary, S equates to 2 if using ERC
if n is 32 and m is 16. Thus, S can be reduced by the factor
3 by using ERCs. Therefore, PSP uses ERC, in particular
RS codes, to realize a high data availability because of the
higher efficiency in terms of the overhead. RS codes have a
relatively high degree of complexity concerning the generation
of coded chunks and its decoding into a complete file [15]
[16]. However, ANs have enough available computing capacity
to solve the computational task.

Another advantage arises from the fact that RS codes are
systematic block codes. This means that data and code chunks
are ordered. Data chunks are followed by coding chunks. If
all m data chunks are available the whole file can be restored
by simple composition of these chunks, i.e. without decoding.
Thus, RS codes have proven to be extremely efficient and
save computing time and energy for the decoding, which takes
TDecodeChunks .

B. Kad-based realization of PSP

PSP is realized by connecting the ANs of an ISP with a Kad
network. The Kad protocol is extended to enable the transfer
and deletion of data chunks. The ANs accomplish a structured
storing of the SD and coded data chunks of other PSP nodes.
Additionally, every AN becomes a peer respectively a PSP
node and is assigned a hash value. The hash values can be
created, e.g., from the IP address. The ANs are placed in the
Kad network depending on their hash values. Each AN is
responsible for storing its own SD in the RAM to provide
all connected customers with IP addresses using the AN’s
DHCP functionality. Furthermore, the AN must store chunks
of sessions data of other ANs. A node has to store chunks if
the hash value of a file name combined with the AN ID is
similar to the node hash value. A detailed description of the
node architecture supporting DHCP and Kad functionality is
given in [3].

C. PSP node interactions

PSP node activities can be triggered by internal or external
events.

Internal events: They happen if the AN needs to perform
one of the three operations read, delete, or store of its own SD
in the Kad network. An AN needs to read its SD from the Kad
network if it has failed before. Finding another AN is performed
with O(log2b(N)) ∗ THop, where THop is the round-trip time
(RTT) between two ANs and O(log2b) denotes the necessary
number of hops to the targets. Deleting is a basic operation,
which is necessary to remove SD that have become invalid.
If an AN detects the change of its SD it deletes the old SD.
Changes happen due to DHCP operations or administrative
commands. If the AN sends DHCP acknowledgments or a
client sends a DHCP release packet the SD is changed and
needs to be updated. Additionally, administrative changes in the
SD result into the necessity of updating the SD. Subsequently,
after having removed the old SD the node stores the new data
in the Kad network, which is the third possible operation and
requires the time TTransData to transmit the data.

rect(t) = u(t) =

8 if n ∗ 120min− 25min < |t| ≤ n ∗ 120min+ 25min

30 if n ∗ 120min+ 25min < |t| ≤ (n+ 1) ∗ 120min− 25min
n = 0, 1...∞ (4)

External events: They occur if an administrative instance
of an ISP sends commands to change SD or PSP parameters.
PSP offers the possibility to directly execute operations on the
AN independently of the DHCP functionality. It is possible to
give the following commands:

• Storing of the actual SD.
• Deletion of an AN’s own stored SD.
• Deletion of distributed SD.
• Sending of requested data parts to administrative instance.
• Modification of RS parameters.

These operations allow the administrative instance to have full
control over the behavior of PSP in terms of data reliability and
stored data. If data is removed, stored, or searched PSP uses
the lookup operation of the Kad protocol to get in contact with
responsible nodes. To enable the search and the transmission
of data, PSP integrates extra search objects into the Kad
protocol. For communications, UDP packets are used. The data
transmission between nodes is carried out with TCP, which
allows a reliable data transfer.

IV. SIMULATION SETUP

By means of simulation, the performance, scalability, and
utilization of the connections by PSP are investigated. Thereby,
the high availability and reliability of the SD in the Kad
network are proven. To show the behavior of thousands of
nodes, a simulation model based on the functionality of the
working prototype of PSP has been developed [3]. A discrete
C++ simulator with a time resolution of one second has
been developed to enable the fast simulation of one year
with several thousands of nodes. To speed up simulation, the
simulation is purely functional and therefore independent of
the network topology. It is able to measure the generated data
volume, exchanged data chunks per second, and to validate
the functionality of the PSP system. As network size for
the simulation, we chose the backbone network of German
Telecom, which consists of about 8,000 main distribution
frames containing the DSL nodes, i.e., the ANs [17]. All
ANs are connected with each other with a bandwidth of 10
GBit/s.

There are two operations an AN needs to execute. First, it
stores the data in the Kad network. Second, the AN wants to
get its own data back from the network.

A. Storing session data in the network

The AN needs to store its data in a distributed manner in the
network. This happens if the SD on the AN changes. Changes
happen if a ”DHCP acknowledge” is transmitted from the
DHCP server to a client or a ”DHCP release” from the client
to the DHCP server. To emulate realistic behavior of the DHCP
traffic, the traffic of a university DHCP server was captured
with the program Wireshark for one week and the ”DHCP

acknowledge” and ”DHCP release” packets were filtered. About
200 customers were connected to the DHCP Server. The IP
lease time is set to two hours.

The chronological sequence of ”DHCP acknowledge” and
”DHCP release” packets handled by the DHCP server can be
described by the rectangular function in Formula 4. There is
a phase with less ”DHCP acknowledge” and ”DHCP release”
packets, which is called ”Low Phase” lasting for the time
TLow of 50 min. Afterwards, a ”High Phase” is characterized
by a higher number of ”DHCP acknowledge” and ”DHCP
release” packets for the time THigh of 70 min. The ”Low
Phase” and ”High Phase” are repeated periodically. In Table I,
the parameters to characterize the DHCP server behavior are
listed in summary.

PARAMETER VALUE

Low Phase 50 min
High Phase 70 min

#DHCP ack./releases per 5 min Low 8
High 30

TABLE I
PARAMETERS OF PERIODIC RECTANGULAR FUNCTION TO EMULATE THE

BEHAVIOR OF THE DHCP SERVER

From the behavior of the DHCP server, the times for the
storing of the SD in the Kad network can be derived. Every
AN in the simulation starts at a random moment within the
first 120 min of the simulation. Within the ”Low Phase”, an
AN distributes its SD every 30 min and during the ”High
Phase” every 10 min as SD changes more frequently. These
time intervals of SD storing in the Kad network correspond to
the time interval of 15 min up to an hour for storing the SD
in the flash memory [1].

Several parameters have to be determined to calculate the
time TStore for encoding and storing a SD in the Kad network
(see Formula 5).

TStore = TEncChunks+THop∗dHopsAvge+TTransData (5)

The average time TEncChunks to encode SD depends on the
SD size. Each AN with its DHCP functionality contains a SD
volume of 4 MB. When storing the data in the network, the data
is split by means of the RS codes. The parameter m and k are
set to 16. This leads to 32 chunks with a size of 256 KB each
resulting in 8 MB altogether. The time to encode k chunks and
to create m chunks depends on the computing power of the AN
hardware. An average AN achieves 1,500 - 3,000 Dhrystone
MIPS of computing power when using a PowerQuicc II Pro
or PowerQuicc III as typical processors [18]. TEncChunks is
determined with a comparable PC and an average value of

7.125 s is achieved. Furthermore, it is important to know the
time needed to store the chunks in the Kad network. The time
for the lookup process to find a responsible node is given by the
average number of hops. The number of hops for a lookup in
Kad is specified by Formula 6. N is the total number of nodes
in the test scenario and varies between 1,000 up to 8,000, which
is the size of the German Telecom backbone. The number of
nodes has been varied to show the scalability of PSP. The
parameter b denotes the number of bits, which can be skipped
with each lookup step and is set to 6. Therefore, the average
number of hops for 8,000 nodes equates to HopsAvg = 2.16
and is set to dHopsAvge = 3 for the worst case. Additionally,
it is necessary to know the RTT of one Hop THop. As typical
RTT value in Germany, a value of 50 ms is assumed.

HopsAvg = log2b(N) (6)

The time for data transfer is described by Formula 7.

TTransData =
Data volume

Bandwidth
(7)

The bandwidth in the simulation is set to 10 GBits/s and
the data size is set to 8 MB. This results in a transfer time
TTransdata of 6.250 ms. In summary, the total time TStore to
store a data set in the Kad network is 7.281 s.

B. Restoring session data from the network

An AN needs to restore its SD from the Kad network if it
is reset after a failure. The time consumption TReset of a reset
procedure ranges from 10 to 15 minutes and is set to 15 min
for the worst case. During the reset procedure, no interaction
with the Kad network is performed. In addition to the practical
worst, average, and best case behavior of the nodes, some
additional theoretical failure profiles have been defined to show
the scalability and performance of PSP. The number of needed
resets after a failure of an AN and corresponding PN values
are given in Table II.

FAILURE PROFILE YEARLY RESETS PN

Worst 130 99.629
Average 13 99.963
Best 1 99.997
Additional 1 50 99.857
Additional 2 100 99.715
Additional 3 250 99.267
Additional 4 365 98.958
Additional 5 500 98.573

TABLE II
FAILURE PROFILES OF THE ANS.

The time TRest for restoring the SD from the Kad network
after a reset is described by Formula 8.

TRest = TDecodeChunks + THop ∗ dHopsAvge+ TTransData

(8)
Hops and THop have the same values like when storing the

data. TTransdata is only half as big as when storing SD as

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000

 0
 100

 200
 300

 400
 500

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

T
ot

al
 a

m
ou

nt
 o

f c
hu

nk
s

pe
r

ye
ar

 [x
10

9]

Nodes #

Failures per year #

T
ot

al
 a

m
ou

nt
 o

f c
hu

nk
s

pe
r

ye
ar

 [x
10

9]

 1
 2
 3
 4
 5
 6
 7
 8
 9

Fig. 2. Total amount of exchanged chunks per year.

only 16 chunks are necessary to restore the SD. Therefore,
PSP cancels further requests for chunks as soon as 16 chunks
available. The time for decoding the collected chunks varies
with the available chunks. The maximum time has been
determined to simulate the worst case behavior. In the worst
case, it is assumed that PSP got 16 coded chunks. This results
into a maximum time TDecodeChunks of 18.760 s. In summary,
the time TRest equals 18.913 s for an AN, which reenters the
Kad network to restore its SD.

As the simulator time resolution is set to one second, TStore

is rounded to 8 s and TRest is rounded to 19 s. In summary,
the simulation parameters are given in Table III.

PARAMETER VALUE DESCRIPTION

N 1,000-8,000 Number of nodes
Days 365 Number of days
TStore 8 s Time to store SD
TRest 19 s Time to restore SD
TLow 30 min Period of data storing in low phase
THigh 10 min Period of data storing in high phase
TReset 15 min Reset time of failed node

TABLE III
PARAMETER VALUES DURING SIMULATION.

V. EVALUATION OF THE RESULTS

Linear scalability: The exchanged SD volume is given in
Figure 2. As apparent, the amount of transferred chunks per
year linearly scales with the number of nodes N in the network.
If we assume 8,000 nodes working with average failure profile,
the average rate for each node equates to 9.1 Kbyte/s, which
is a not a significant traffic overhead. This results in a capacity
utilization of 0.0069 h for the 10 Gbit/s connection, which
does not impact the functionality of the ANs. Additionally,
the number of transmitted chunks slightly decreases with an
increasing number of failures per year. This happens due to
inactivity of failed node, which do not store their SD in the Kad
network until they are active again. This behavior is exemplary
displayed in Figure 3 for the network sizes of 8,000, 7,000,
and 6,000 nodes.

6

6,5

7

7,5

8

8,5

9

0 100 200 300 400 500To
ta
l a
m
o
u
n
t
o
f
C
h
u
n
ks
 p
e
r
Ye
ar

x1
0
9

Yearly Failures

8000

7000

6000

Fig. 3. Total amount of chunks per year.

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000

 0
 100

 200
 300

 400
 500

 0
 100
 200
 300
 400
 500
 600
 700
 800

M
ax

. c
hu

nk
s

pe
r

se
co

nd
 [#

/s
]

Nodes #

Failures per year #

M
ax

. c
hu

nk
s

pe
r

se
co

nd
 [#

/s
]

 200

 300

 400

 500

 600

 700

 800

Fig. 4. Peak number of chunks per second.

Low traffic overhead: Another important value is the
highest chunk number exchanged per second, which is an
indicator for the maximum network load in the system. These
results are depicted in Figure 4. The maximum number of
chunks per second directly depends on the number of nodes N
in the network. The highest number of exchanged chunks
per second for 8,000 nodes running with average failure
profile is 701 per second. This results in a data volume of
175,25 MByte/s in the whole Kad network. With respect to the
high number of nodes, this is a relatively small data volume.

Permanent data availability: During the simulations, it
never happens that PSP is unable to recover the SD from
the P2P network due to high availability. This could also be
guaranteed with a theoretical failure profile, which generates
significant more failures than the practical worst case. The
results of the simulation underline the applicability of PSP for
large scale networks.

VI. CONCLUSION

An approach called PSP is presented to share the volatile
RAM resources of ANs to form a distributed data storage
with high resilience by using a Kad network. Free resources
on the ANs offer the the opportunity to run PSP directly on
the ANs. To characterize PSP in terms of scalability, traffic
overhead, and high availability of SD, a simulation model of
the PSP node functionality has been developed to enable the
simulation of a large scale network. An extensive simulation
with 8,000 ANs shows a linear scalability in terms of generated

data volume and maximum exchanged chunks per seconds. The
generated traffic volume occupies only 0.0069 h of the 10
Gbit/s connections of the AN and therefore does not impact
the AN functionality. Additionally, every failing PSP node
was able to restore its SD during a simulation time of one
year, even with a higher yearly theoretical failure rate than
the specified practical worst case. Summarized, PSP offers a
DHT-based distributed storing system with high availability
and reliability of SD in large scale networks.

Prospectively, investigations on how to ensure a real-time
behavior for data exchange in PSP will be carried out.

REFERENCES

[1] M. Ninnemann, “Freescale semiconductor powerquicc ii pro - perfor-
mance and utilization,” Broadband Access Division. Former Nokia
Siemens Networks GmbH & Co. KG, November 2011.

[2] W. L. et al., “Erasure code replication revisited.” IEEE P2P, 2004, pp.
90–97.

[3] P. Danielis, M. Gotzmann, D. Timmermann, T. Bahls, and D. Duchow,
“A peer-to-peer-based storage platform for storing session data in internet
access networks,” Telecommunications: The Infrastructure for the 21st
Century (WTC), 2010, pp. 1 –6, sept. 2010.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: an architecture for global-scale persistent storage,”
SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

[5] H. Ribeiro and E. Anceaume, “Datacube: A p2p persistent data
storage architecture based on hybrid redundancy schema,” in Parallel,
Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, feb. 2010, pp. 302 –306.

[6] M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Muller, M. Hauswirth,
R. Schmidt, and R. John, “Unistore: Querying a dht-based universal
storage,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on, april 2007, pp. 1503 –1504.

[7] C. Morariu, T. Kramis, and B. Stiller, “Dipstorage: Distributed storage
of ip flow records,” in Local and Metropolitan Area Networks, 2008.
LANMAN 2008. 16th IEEE Workshop on, sept. 2008, pp. 108 –113.

[8] P. Druschel and A. Rowstron, “Past: a large-scale, persistent peer-to-peer
storage utility,” in Hot Topics in Operating Systems, 2001. Proceedings
of the Eighth Workshop on, may 2001, pp. 75 – 80.

[9] Y. Ye, I.-L. Yen, L. Xiao, and B. Thuraisingham, “Secure, highly available,
and high performance peer-to-peer storage systems,” in High Assurance
Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, dec.
2008, pp. 383 –391.

[10] R. Stutzbach, Daniel ; Rejaie, “Improving lookup performance over a
widely-deployed dht.” INFOCOM, 2006, pp. 1–12.

[11] R. Steinmetz and K. Wehrle, P2P Systems and Applications, Springer
Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg,
2005.

[12] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric.” IPTPS, 2002.

[13] L. Toka, M. Dell’Amico, and P. Michiardi, “Data transfer scheduling for
p2p storage,” in Peer-to-Peer Computing (P2P), 2011 IEEE International
Conference on, 31 2011-sept. 2 2011, pp. 132 –141.

[14] Q. Xin, T. Schwarz, and E. L. Miller, “Availability in global peer-to-peer
storage systems,” Dec. 2004.

[15] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding vs.
replication,” in Fourth International Workshop on Peer-to-Peer Systems,
2005.

[16] V. Huffman, W. C. ; Pless, “Fundamentals of error-correcting codes.”
Cambridge University Press, 2003.

[17] S. Schweda, “Federal Administrative Court Rejects Competitors’ Claim
for Access to Telekom’s Dark Fibre,” 2010. [Online]. Available:
http://merlin.obs.coe.int/iris/2010/3/article14.en.html

[18] freescale semiconductors, “Integrated Communications Processors:
MPC8360E PowerQUICC II Pro Family,” Tech. Rep., 2007.

