Rotationsspektroskopie

Zur Theorie der Rotationsspektren¹).

Von Fritz Reiche.

Mit einer Abbildung.

(Eingegangen am 29. Dezember 1919.)

Bekanntlich schreibt man die im langwelligen Ultrarot gelegenen Absorptions- und Emissionsbanden mehratomiger Gasverbindungen der Rotation ihrer Moleküle zu, deren Atome polare elektrische Ladungen tragen und daher bei der Rotation des Moleküls nach der klassischen Elektrodynamik Strahlung emittieren und absorbieren. Seit N. Bjerrum²) weiß man, daß diese Rotationen sich auch im kurzwelligen Ultrarot bemerkbar machen. Existiert nämlich eine in dieses Gebiet fallende Schwingung der Atome im Molekül gegeneinander, etwa mit der Schwingungszahl v_0 , und rotiert außerdem das ganze Molekül mit der Umlaufszahl v_r (pro Sekunde), so entstehen durch die Zusammensetzung der Schwingung mit der Rotation nach Rayleigh³) neben den beiden alten Absorptions- (und Emissions-) stellen $v = v_0$ und $v = v_r$ zwei neue: $v = v_0 + v_r$ und $v = v_0 - v_r$. In diesem Sinne hat bekanntlich Bjerrum die oft beobachtete "Doppelbande" gedeutet.

Nach der Quantentheorie, und zwar in der ersten Planckschen

Zeitschrift für Physik A: Hadrons and Nuclei, Volume 1, Number 4 / August 1920

Rotation zweier Massen um den gemeinsamen Schwerpunkt:

$$m_1 r_1 = m_2 r_2 \qquad \qquad \wedge \quad r = r_1 + r_2$$

$$\Rightarrow \qquad m_1 r_1 = m_2 (r - r_1)$$
$$m_1 r_1 = m_2 r - m_2 r_1$$
$$(m_1 + m_2) r_1 = m_2 r$$

$$\Rightarrow \qquad r_1 = \frac{m_2}{m_1 + m_2} r \wedge r_2 = \frac{m_1}{m_1 + m_2} r$$

Rotationsenergie:

$$E_{\rm rot} = \frac{1}{2} I \omega^2 = \frac{1}{2} \left(m_1 r_1^2 + m_2 r_2^2 \right) \omega^2$$

Trägheitsmoment:

$$I = m_1 r_1^2 + m_2 r_2^2 = m_1 \left(\frac{m_2}{m_1 + m_2}r\right)^2 + m_2 \left(\frac{m_1}{m_1 + m_2}r\right)^2$$

$$= \left(\frac{r}{m_1 + m_2}\right)^2 m_1 m_2 (m_2 + m_1) = \frac{m_1 m_2}{m_1 + m_2} r^2 = \mu r^2$$

Rotationsenergie:

$$E_{\rm rot} = \frac{1}{2}I\omega^2 = \frac{1}{2}\mu r^2\omega^2$$

Trägheitsmoment:

$$I = \frac{m_1 m_2}{m_1 + m_2} r^2 = \mu r^2$$

Reduzierte Masse:

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$I = \sum_{i} m_{i} r_{i}^{2}$$

$$I = \sum_{i} m_{i} r_{i}^{2} = m_{H_{1}} r_{H_{1}}^{2} + 0 + m_{H_{2}} r_{H_{2}}^{2} = 2m_{H} r_{H}^{2} = 2m_{H} R^{2} \sin^{2} \phi$$

 $= 2(1.67 \times 10^{-27} \text{kg})(9.57 \times 10^{-11} \text{m})^2 \sin^2(52.3^\circ) = 1.91 \times 10^{-47} \text{kgm}^2$

Linearer Kreisel:
$$I_{aa} = I_{\parallel} = 0$$
 $I_{bb} = I_{cc} = I_{\perp}$

Sphärischer Kreisel:
$$I_{aa} = I_{bb} = I_{cc} = I$$

Symmetrischer Kreisel:

$$\begin{split} I_{aa} &= I_{bb} = I_{\perp} & I_{cc} = I_{\parallel} \\ I_{aa} &= I_{\parallel} & I_{bb} = I_{cc} = I_{\perp} \end{split}$$

Asymmetrischer Kreisel: $I_{aa} < I_{bb} < I_{cc}$

Symmetrie und Kreiseltyp eines Moleküls

Ist ein Molekül linear, dann handelt es sich um einen linearen Kreisel.

Ist ein Molekül nicht linear, dann handelt es sich um einen sphärischen Kreisel, wenn mehr als eine Drehachse C_n oder mehr als eine Drehspiegelachse S_n mit $n \ge 3$ vorhanden sind.

Symmetrie und Kreiseltyp eines Moleküls

Ist ein Molekül nicht linear, dann handelt es sich um einen symmetrischen Kreisel, wenn genau eine Drehachse C_n oder genau eine Drehspiegelachse S_n mit $n \ge 3$ vorhanden ist.

Ist ein Molekül nicht linear, dann handelt es sich um einen asymmetrischen Kreisel, wenn weder eine Drehachse C_n noch eine Drehspiegelachse S_n mit $n \ge 3$ vorhanden sind.

Rotation um eine Achse (a):

$$E = \frac{1}{2}I_{aa}\omega_a^2 = \frac{J_a^2}{2I_{aa}} \quad \text{mit} \quad J_a = I_{aa}\omega_a$$

Rotation um drei Achsen (a, b, c):

$$E = \frac{1}{2}I_{aa}\omega_a^2 + \frac{1}{2}I_{bb}\omega_b^2 + \frac{1}{2}I_{cc}\omega_c^2 = \frac{J_a^2}{2I_{aa}} + \frac{J_b^2}{2I_{bb}} + \frac{J_c^2}{2I_{cc}}$$

Gegeben sei ein Molekül mit bekannten kartesischen Koordinaten $\mathbf{r}_i = (x_i \ y_i \ z_i)$ der Atome, wobei der Schwerpunkt $\mathbf{r}_{SP} = \sum_i m_i \mathbf{r}_i / \sum_i m_i$ des Moleküls im Ursprung des Koordinatensystems liegt.

Nun soll die Rotation um eine Achse durch den Molekülschwerpunkt betrachtet werden; die Orientierung der Achse ist durch den Vektor $\boldsymbol{\omega} = (\omega_x \ \omega_y \ \omega_z)$ gegeben, die Winkelgeschwindigkeit der Rotation durch $|\boldsymbol{\omega}|$.

Dann lautet der allgemeine Ausdruck für die Energie der Rotation:

$$E = \frac{1}{2} \boldsymbol{\omega}^{\mathrm{T}} \mathbf{I} \boldsymbol{\omega} = \frac{1}{2} \begin{pmatrix} \omega_{x} & \omega_{y} & \omega_{z} \end{pmatrix} \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix}$$

$$I_{xx} = \sum_{i} m_{i} \left(y_{i}^{2} + z_{i}^{2} \right) \qquad I_{xy} = I_{yx} = -\sum_{i} m_{i} x_{i} y_{i}$$
$$I_{yy} = \sum_{i} m_{i} \left(x_{i}^{2} + z_{i}^{2} \right) \qquad I_{xz} = I_{zx} = -\sum_{i} m_{i} x_{i} z_{i}$$
$$I_{zz} = \sum_{i} m_{i} \left(x_{i}^{2} + y_{i}^{2} \right) \qquad I_{yz} = I_{zy} = -\sum_{i} m_{i} y_{i} z_{i}$$

Verwendung eines molekülfesten Achsensystems, welches so orientiert ist, dass der Trägheitstensor diagonal wird: Hauptträgheitsachsen *a*, *b* und *c*.

$$E = \frac{1}{2} \begin{pmatrix} \omega_a & \omega_b & \omega_c \end{pmatrix} \begin{pmatrix} I_{aa} & 0 & 0 \\ 0 & I_{bb} & 0 \\ 0 & 0 & I_{cc} \end{pmatrix} \begin{pmatrix} \omega_a \\ \omega_b \\ \omega_c \end{pmatrix}$$

$$= \frac{1}{2}I_{aa}\omega_{a}^{2} + \frac{1}{2}I_{bb}\omega_{b}^{2} + \frac{1}{2}I_{cc}\omega_{c}^{2}$$

Rotationsniveaus (Sphärischer Kreisel)

$$E = \frac{J_a^2 + J_b^2 + J_c^2}{2I} = \frac{|\mathbf{J}|^2}{2I}$$

Quantenmechanische Behandlung: Quantelung des Betrags des Drehimpulses J

$$|\mathbf{J}|^2 \rightarrow J(J+1)\hbar^2 \text{ mit } J=0,1,2,\dots$$

Quantenzahl J: Rotationsquantenzahl

Rotationsniveaus (Sphärischer Kreisel)

$$E_J = \frac{|\mathbf{J}|^2}{2I} = J(J+1)\frac{\hbar^2}{2I}$$
 mit $J = 0, 1, 2, ...$

$$hcB = \frac{\hbar^2}{2I} \quad \Leftrightarrow \quad B = \frac{\hbar}{4\pi cI}$$

$$E_J = hcBJ(J+1)$$
 mit $J = 0, 1, 2, ...$

Konstante B: Rotationskonstante

Rotationsniveaus (Sphärischer Kreisel)

Energieniveaus:

$$E_J = hcBJ(J+1)$$
 mit $J = 0, 1, 2, ...$

Rotationsterm:

$$F(J) = \frac{E_J}{hc} = BJ(J+1)$$

Abstand benachbarter Energieniveaus:

$$F(J) - F(J-1) = 2BJ$$

Die Rotationskonstante *B* nimmt mit steigendem *I* ab: $I(\text{CCl}_4) > I(\text{CH}_4) \rightarrow B(\text{CCl}_4) < B(\text{CH}_4)$

Entartung der Niveaus (Sphärischer Kreisel)

Wellenfunktion:

$$\Psi = \Psi_{J,M_J,K}(...)$$

$$J = 0, 1, 2, ...$$

$$M_J = -J, -J + 1, ..., J - 1, J$$

$$K = -J, -J + 1, ..., J - 1, J$$

Jedes Energieniveau ist $(2J + 1)^2$ -fach entartet: $g_J = (2J + 1)^2$.

Rotationsniveaus (Symmetrischer Kreisel)

$$E = \frac{J_a^2}{2I_{\parallel}} + \frac{J_b^2 + J_c^2}{2I_{\perp}} = \frac{J_a^2}{2I_{\parallel}} + \frac{|\mathbf{J}|^2 - J_a^2}{2I_{\perp}} = \frac{|\mathbf{J}|^2}{2I_{\perp}} + \left(\frac{1}{2I_{\parallel}} - \frac{1}{2I_{\perp}}\right)J_a^2$$

Quantenmechanische Behandlung: Quantelung des Betrags des Drehimpulses **J**

$$|\mathbf{J}|^2 \rightarrow J(J+1)\hbar^2 \text{ mit } J=0,1,2,\dots$$

Quantenzahl J: Rotationsquantenzahl

Rotationsniveaus (Symmetrischer Kreisel)

$$E_{J,K} = J(J+1)\frac{\hbar^2}{2I_{\perp}} + \left(\frac{\hbar^2}{2I_{\parallel}} - \frac{\hbar^2}{2I_{\perp}}\right)K^2$$

 $J = 0, 1, 2, \dots$

$$K=0,\pm 1,\ldots,\pm J$$

$$hcB = \frac{\hbar^2}{2I_{\perp}} \quad \Leftrightarrow \quad B = \frac{\hbar}{4\pi cI_{\perp}}$$
$$hcA = \frac{\hbar^2}{2I_{\parallel}} \quad \Leftrightarrow \quad A = \frac{\hbar}{4\pi cI_{\parallel}}$$

Rotationsniveaus (Symmetrischer Kreisel)

Energieniveaus:

$$E_{J,K} = hcBJ(J+1) + hc(A-B)K^{2}$$

$$J = 0, 1, 2, ...$$

$$K = 0, \pm 1, ..., \pm J$$

Rotationsterm:

$$F(J,K) = \frac{E_{J,K}}{hc} = BJ(J+1) + (A-B)K^{2}$$

Rotationskonstanten:

$$B = \frac{\hbar}{4\pi c I_{\perp}}$$
 und $A = \frac{\hbar}{4\pi c I_{\parallel}}$

Entartung der Niveaus (Symmetrischer Kreisel)

Wellenfunktion:

 $\Psi = \Psi_{J,M_J,K}(...)$ J = 0, 1, 2, ... $M_J = -J, -J + 1, ..., J - 1, J$ K = -J, -J + 1, ..., J - 1, J

Jedes Energieniveau ist 2(2J + 1)-fach entartet: $g_J = 2(2J + 1)$. (Ausnahme: $g_{J=0} = 1$.)

Entartung der Niveaus (Symmetrischer Kreisel)

K \hbar ist die Komponente des Drehimpulses für die Rotation um die zu *I*_{||} gehörige Molekülachse.

Rotationsniveaus (Linearer Kreisel)

$$E = \frac{J_b^2 + J_c^2}{2I_{\perp}} = \frac{|\mathbf{J}|^2}{2I_{\perp}}$$

Quantenmechanische Behandlung: Quantelung des Betrags des Drehimpulses J

$$|\mathbf{J}|^2 \rightarrow J(J+1)\hbar^2 \text{ mit } J=0,1,2,\ldots$$

Quantenzahl J: Rotationsquantenzahl

Rotationsniveaus (Linearer Kreisel)

$$E_J = \frac{|\mathbf{J}|^2}{2I_{\perp}} = J(J+1)\frac{\hbar^2}{2I_{\perp}}$$
 mit $J = 0, 1, 2, ...$

$$hcB = \frac{\hbar^2}{2I_{\perp}} \quad \Leftrightarrow \quad B = \frac{\hbar}{4\pi cI_{\perp}}$$

$$E_J = hcBJ(J+1)$$
 mit $J = 0, 1, 2, ...$

Konstante B: Rotationskonstante

Rotationsniveaus (Linearer Kreisel)

Energieniveaus:

$$E_J = hcBJ(J+1)$$
 mit $J = 0, 1, 2, ...$

Rotationsterm:

$$F(J) = \frac{E_J}{hc} = BJ(J+1)$$

Abstand benachbarter Energieniveaus:

$$F(J) - F(J-1) = 2BJ$$

Die Rotationskonstante *B* nimmt mit steigendem *I* ab: $I_{\perp}(^{1}\text{H}^{37}\text{Cl}) > I_{\perp}(^{1}\text{H}^{35}\text{Cl}) \rightarrow B(^{1}\text{H}^{37}\text{Cl}) < B(^{1}\text{H}^{35}\text{Cl})$

Entartung der Niveaus (Linearer Kreisel)

Wellenfunktion:

$$\Psi = \Psi_{J,M_J}(\mathcal{G}, \varphi) = Y_{J,M_J}(\mathcal{G}, \varphi)$$
$$J = 0, 1, 2, \dots$$
$$M_J = -J, -J + 1, \dots, J - 1, J$$

Jedes Energieniveau ist (2J + 1)-fach entartet: $g_J = 2J + 1$.

Entartung der Niveaus (Linearer Kreisel)

 $M_{J}\hbar$ ist die Komponente des Drehimpulses bezüglich einer äußeren Achse (z - Achse).

Aufhebung der Entartung (Stark-Effekt)

Energieniveaus eines linearen Kreisels mit dem Dipolmoment μ in einem elektrischen Feld der Feldstärke |**E**|:

$$E(J, M_J) = hcBJ(J+1) + a(J, M_J)\mu^2 |\mathbf{E}|^2$$
$$a(J, M_J) = \frac{J(J+1) - 3M_J^2}{2hcBJ(J+1)(2J-1)(2J+3)}$$

Aufhebung der Entartung (Stark-Effekt)

Rotationsspektrum eines linearen Kreisels

Allgemeine Auswahlregel (für alle Kreiseltypen):

Damit ein Molekül ein Rotationsspektrum (Mikrowellenspektrum) aufweisen kann, muss es ein permanentes Dipolmoment besitzen.

Spezielle Auswahlregel: $\Delta J = \pm 1$ oder $J \rightarrow J \pm 1$ $\Delta M_J = 0, \pm 1$

Rotationsspektrum eines linearen Kreisels

Absorption von elektromagnetischer Strahlung:

$$\widetilde{\nu}(J \rightarrow J+1) = F(J+1) - F(J)$$
$$= B(J+1)(J+2) - BJ(J+1)$$
$$= 2B(J+1)$$

Rotationsspektrum eines linearen Kreisels

Rotationsspektrum eines linearen Kreisels

Intensität der Linien:

- Besetzung des Ausgangsniveaus (proportional zu $g_J \times \exp(-E_J/k_BT)$)
- Größe des Übergangsdipolmoments

Nichtstarrer linearer Kreisel

$$F(J) = BJ(J+1) - D_J J^2 (J+1)^2$$

Für ein zweiatomiges Molekül gilt: $D_J \approx 4B^3 / \tilde{v}^2$ \tilde{v} ist die Wellenzahl der Schwingung.

Anwendungen der Mikrowellenspektroskopie

1. Bestimmung von Bindungsabständen und Bindungswinkeln

$$\tilde{\nu} \rightarrow B \rightarrow I = I$$
(Geometrie)

2. Bestimmung von Dipolmomenten

Stark-Effekt

Anwendungen der Mikrowellenspektroskopie

Internal dynamics in organometallic molecules: Rotational spectrum of (CH₃)₃GeCl Melanie Schnell and Jens-Uwe Grabow, Phys. Chem. Chem. Phys., 2006, 8, 2225

Fig. 2 Schematic diagram of the rotational spectrum of $(CH_3)_3$ GeCl. One $J + 1 \leftarrow J$ rotational transition is divided into several subgroups because of Cl- and Ge-isotopologues, internal rotation of the three equivalent CH₃ groups and Cl hyperfine structure, as discussed in the text. The magnitude of the separations between the groups is given for the example of the $J + 1 \leftarrow J = 5 \leftarrow 4$ transition.

$$F = -kx$$

$$F = ma = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

Klassische Lösung:
$$x = x_0 \cos(2\pi vt)$$
 mit $v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

$$E_{\rm pot} = \frac{1}{2} k x^2 = 2\pi^2 m v^2 x^2$$

Schwingung zweier Massen m_1 und m_2 gegeneinander:

$$m_1 \frac{\mathrm{d}^2 x_1}{\mathrm{d}t^2} = +k(x_2 - x_1 - l_0)$$

$$m_2 \frac{\mathrm{d}^2 x_2}{\mathrm{d}t^2} = -k(x_2 - x_1 - l_0)$$

$$\frac{\mathrm{d}^2 x_2}{\mathrm{d}t^2} - \frac{\mathrm{d}^2 x_1}{\mathrm{d}t^2} = -\frac{k}{m_2} (x_2 - x_1 - l_0) - \frac{k}{m_1} (x_2 - x_1 - l_0)$$

$$\frac{\mathrm{d}^2(x_2 - x_1)}{\mathrm{d}t^2} = -k \left(\frac{1}{m_2} + \frac{1}{m_1}\right)(x_2 - x_1 - l_0)$$

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} = \frac{m_1 + m_2}{m_1 m_2}$$

$$x = x_2 - x_1 - l_0$$

$$\mu \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -kx$$

↓

Schrödinger-Gleichung:

$$-\frac{\hbar^2}{2\mu}\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + \frac{1}{2}kx^2\Psi = E\Psi$$

Energieniveaus:

$$E_{v} = hv\left(v + \frac{1}{2}\right)$$
 mit $v = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$ und $v = 0, 1, 2, ...$

$$E_{v} = hv\left(v + \frac{1}{2}\right) = \hbar\omega\left(v + \frac{1}{2}\right)$$
 mit $v = 0, 1, 2, ...$

$$\Psi_{\nu}(x) = N_{\nu}H_{\nu}(y)\exp\left(-\frac{y^2}{2}\right) \quad \text{mit} \quad y = \frac{x}{\alpha} \quad \text{und} \quad \alpha = \left(\frac{\hbar^2}{\mu k}\right)^{1/4}$$
$$N_{\nu} = \left(\frac{1}{\sqrt{\pi} 2^{\nu} \nu! \alpha}\right)^{1/2}$$

Hermite 'sche Polynome:

 $H_{0}(y) = 1$ $H_{1}(y) = 2y$ $H_{2}(y) = 4y^{2} - 2$ \vdots $H_{v+1}(y) = 2yH_{v}(y) - 2vH_{v-1}(y)$

Schwingungsspektren (Infrarot-Spektren)

Allgemeine Auswahlregel:

Damit eine Molekülschwingung in einem Schwingungsspektrum (IR-Spektrum) beobachtet werden kann, muss sich das Dipolmoment des Moleküls während der Schwingung ändern.

Spezielle Auswahlregel: $\Delta v = \pm 1$ oder $v \rightarrow v \pm 1$

Schwingungsspektren (Infrarot-Spektren)

Absorption von elektromagnetischer Strahlung:

$$F(v) = \frac{E_v}{hc} = \frac{hv}{hc} \left(v + \frac{1}{2}\right) = \widetilde{v} \left(v + \frac{1}{2}\right)$$

$$\widetilde{v}(v \rightarrow v+1) = F(v+1) - F(v) = \widetilde{v}\left((v+1) + \frac{1}{2}\right) - \widetilde{v}\left(v + \frac{1}{2}\right) = \widetilde{v}$$

Morse-Potenzial:

$$V = hcD_{\rm e} \left(1 - {\rm e}^{-a(R-R_{\rm e})}\right)^2$$

$$a = \left(\frac{\mu\omega^2}{2hcD_{\rm e}}\right)^{1/2}$$

Für hinreichend kleine *x* gilt $e^{-x} \approx 1-x$ oder $1-e^{-x} \approx x$. Somit gilt für hinreichend kleine Auslenkungen $R-R_e$:

$$V \approx hcD_{\rm e}a^2(R-R_{\rm e})^2$$
$$= hcD_{\rm e}\left(\frac{\mu\omega^2}{2hcD_{\rm e}}\right)(R-R_{\rm e})^2$$
$$= \frac{1}{2}\mu\omega^2(R-R_{\rm e})^2$$
$$= \frac{1}{2}k(R-R_{\rm e})^2$$

Schwingungsterm:

$$F(v) = \tilde{v}\left(v + \frac{1}{2}\right) - x_{\rm e}\tilde{v}\left(v + \frac{1}{2}\right)^2 \quad \text{mit} \quad x_{\rm e} = \frac{a^2\hbar}{2\mu\omega} = \frac{\tilde{v}}{4D_{\rm e}}$$

Spezielle Auswahlregel:

$$\Delta v = \pm 1, \pm 2, \pm 3, \ldots$$

Grundschwingung: Oberschwingung:

$$v = 0 \rightarrow v = 1$$

 $v = 0 \rightarrow v = 2, 3, \dots$

Die Dissoziationsenergie

- *D*₀: Chemische Dissoziationsenergie
- *D*_e: Spektroskopische Dissoziationsenergie

$$D_{\rm e} = D_0 + hcF(v=0)$$

Die Dissoziationsenergie

Bestimmung von D_0 mittels Birge-Sponer-Auftragung

Übergänge im IR-Spektrum:

$$\widetilde{\nu} = [F(\upsilon+1) - F(\upsilon)] \pm [F(J+1) - F(J)]$$

Rotationsschwingungsspektrum von HCl

9.20 x10¹³ 8.60 8.80 8.00 8.20 8.40 9.00 Frequency (Hz) P-Zweig Q-Zweig R-Zweig

Rotationsschwingungsspektrum von HCl

 $\widetilde{v}_{\mathrm{P}}(J \rightarrow J-1) = F(v+1, J-1) - F(v, J) = \widetilde{v} - 2BJ \quad \text{mit} \quad J = 1, 2, \dots$

Rotationsschwingungsspektrum von HCl

9.20 x10¹³ 8.60 8.80 8.00 8.20 8.40 9.00 Frequency (Hz) P-Zweig Q-Zweig R-Zweig

Rotationsschwingungsspektrum von HCl

 $\widetilde{v}_{R}(J \to J+1) = F(v+1, J+1) - F(v, J) = \widetilde{v} + 2B(J+1) \text{ mit } J = 0, 1, \dots$

Bestimmung der Kraftkonstante

v=1 v=0v=0→1 j=1→0 v=0-+1 i=0 → 1 Estimate of peak positions 8.60 Center frequency 8.72 for v=0-+ v=1 Center frequency 8.66 x10¹³ 8.80 x10¹³ 8.60 Frequency (Hz)

$$\mu = \frac{m({}^{1}\text{H}) \times m({}^{35}\text{Cl})}{m({}^{1}\text{H}) + m({}^{35}\text{Cl})} = \frac{1.0078 \times 34.9688}{1.0078 + 34.9688} \text{ amu} = 0.9796 \text{ amu}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

$$k = (2\pi\nu)^{2} \mu$$

$$= \left[2\pi \left(8.66 \cdot 10^{13} \text{ s}^{-1}\right)\right]^{2} \times (0.9796 \text{ amu}) \times (1.66 \cdot 10^{-27} \text{ kg}/\text{ amu})$$

$$= 481 \text{ N/m}$$

Bestimmung der Kraftkonstante

Molekül	Frequenz v/10 ¹³ Hz	Kraftkonstante <i>k</i> / (N/m)
HF	12.4	970
HC1	8.66	480
HBr	7.68	410
HI	6.69	320
CO	6.42	1860
NO	5.63	1530

Bestimmung des Bindungsabstands

Bestimmung des Bindungsabstands

Auswirkung der Zentrifugaldehnung

Reines Rotationsspektrum (Mikrowellenspektrum) von HCl:

$J \rightarrow J + 1$	$\widetilde{v}/\mathrm{cm}^{-1}$	<i>R</i> / nm
$3 \rightarrow 4$	83.03	0.1288
$4 \rightarrow 5$	103.73	0.1288
$5 \rightarrow 6$	124.30	0.1289
$6 \rightarrow 7$	145.03	0.1289
$7 \rightarrow 8$	165.51	0.1290
$8 \rightarrow 9$	185.86	0.1291
$9 \rightarrow 10$	206.38	0.1292
$10 \rightarrow 11$	226.50	0.1293

Linienintensität

Besetzung der Rotationsniveaus gemäß Boltzmann-Faktor:

 $\eta(E_J) = g_J \times \exp(-E_J / k_B T) = (2J+1) \times \exp(-J(J+1)\hbar^2 / 2Ik_B T)$

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot2.html

Linienintensität

$$\begin{aligned} \frac{d\eta}{dJ}\Big|_{J=J_{\text{max}}} &= \left[2 - (2J_{\text{max}} + 1)^2 \hbar^2 / 2Ik_{\text{B}}T\right] \times \exp\left(-J_{\text{max}} (J_{\text{max}} + 1)\hbar^2 / 2Ik_{\text{B}}T\right) \stackrel{!}{=} 0\\ 2J_{\text{max}} + 1 &= \sqrt{\frac{4Ik_{\text{B}}T}{\hbar^2}} = \sqrt{\frac{4\mu R^2 k_{\text{B}}T}{\hbar^2}}\\ J_{\text{max}} &= \frac{1}{2} \left(\sqrt{\frac{4\mu R^2 k_{\text{B}}T}{\hbar^2}} - 1\right)\\ J_{\text{max}} &= \frac{1}{2} \left(\sqrt{\frac{4(0.9796)(1.66 \cdot 10^{-27})(0.13 \cdot 10^{-9})^2(1.38 \cdot 10^{-23})(300)}{(1.05 \cdot 10^{-34})^2}} - 1\right)\\ J_{\text{max}} &= 2.7\end{aligned}$$

Linienintensität

Relative Linienintensitäten

Besetzung der höheren Schwingungszustände bei Raumtemperatur sehr gering:

$$\frac{\eta(v=1)}{\eta(v=0)} = \frac{1 \times \exp(-(3/2)hv/k_{\rm B}T)}{1 \times \exp(-(1/2)hv/k_{\rm B}T)} = \exp(-hv/k_{\rm B}T)$$
$$hv = (6.63 \cdot 10^{-34})(8.66 \cdot 10^{13}) \,\text{J} = 0.359 \,\text{eV}$$
$$k_{\rm B}T = (1.38 \cdot 10^{-23})(300) \,\text{J} = 0.0259 \,\text{eV}$$

$$\frac{\eta(v=1)}{\eta(v=0)} = 9.5 \cdot 10^{-7}$$

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot2.html

Relative Linienintensitäten

Vergleich der Besetzungszahlen der Zustände J = 3, v = 0 und J = 8, v = 0:

$$\frac{\eta(J=3)}{\eta(J=8)} = \frac{(2\cdot3+1)\times\exp(-3(3+1)\hbar^2/2Ik_{\rm B}T)}{(2\cdot8+1)\times\exp(-8(8+1)\hbar^2/2Ik_{\rm B}T)}$$

$$=\frac{7\times\exp(-12\hbar^2/2Ik_{\rm B}T)}{17\times\exp(-72\hbar^2/2Ik_{\rm B}T)}$$

$$\frac{\eta(J=3)}{\eta(J=8)} = 7.5$$

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot2.html

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot2.html