

Joachim Rychly

University of Rostock, Medical Faculty, **Cell Biology Laboratory** Schillingallee 69, 18057 Rostock

www.zellbiologie.uni-rostock.de

joachim.rychly@med.uni-rostock.de

Cell Biology Laboratory Center for Medical Research

Outline

- O Biomaterials in General
- Cell-Extracellular Matrix Interaction
- O Designing Bioactive Biomaterials for Medicine
- Cellular Responses to Biomaterial Surfaces
- O Stem Cells and Biomaterials

Therapies for a missing organ

- Transplantation (e.g. kidney, heart, liver, lung)
- Autografting (e.g. heart bypass, skin grafting)
 - Permanent implants (hip prosthesis, pacemaker, breast implant)
 - In vitro synthesis (e. g. epidermis)

-

In vivo synthesis or regeneration (e.g. skin, nerves, bones)

Biomaterials

Definition by the National Institute of Health Biomaterials Consensus Conference (1998):

"Any material, natural, man made, or device that comprises hole or part of a living organism, which performs or replaces a natural function within a living organism"

"Any material of natural or of synthetic origin that comes in contact with tissue, blood or biological fluids, and intended for use in prosthetic, diagnostic, therapeutic or storage applications without adversely affecting the living organism and its components"

History of Biomaterials

The first biomaterials were used over 2000 years ago by the Chinese and Romans

They used gold in dental restoration.

Tomb of an Egyptian chief dentist 5th dynasty, 2200 BC

One of the major discoveries was made in Second World War II when shards of poly-methyl-metacrylate (PMMA) was tolerated in the eyes of pilots after a crash.

Most of the biomaterials were adopted from other areas of science and technologies.

Biomaterials

Metals
Ceramics
Polymers
Composites
Natural Materials

Material	Advantages	Disadvantages
POLYMERS: Nylon, silicones, PTFE, UHMWPE	Resilient, easy to fabricate	Not strong, deform with time, may degrade
METALS: Titanium, stainless steels, CoCr alloys, gold	Strong, tough, ductile	May corrode, high density
CERAMICS: Aluminum oxide, carbon, hydroxyapatite	Highly biocompatible, inert, high modulus and compressive strength, good esthetic properties	Brittle, difficult to make, poor fatigue resistance
COMPOSITES:	Strong, tailor-made	Difficult to make
Natural Materials:		
Extracellular matrix proteins		

Principal Application of Biomaterials

Bone Implants

Artificial hip implant

The surface of the titanium implant interacts with bone tissue

Developments of Materials

Implant Materials Produced by DOT GmbH

Implants to stabilize bone fractures

Titanium implant to stabilize zygomatic bone fracture

Implants in Dentistry

Stent for Opening the Vessel

Blood Cell Interaction in Extracorporal Systems

Example of Heart-Lung Machine

Hemodialysis

HLM during open heart surgery

The design of the implant surface to interact with the tissue depends on the purpose of the implant:

Inside must have bloodcompatible surface, i. e. schould not cause adhesion or clotting

<u>Outside</u> must firmly atttach to surrounding fibrous tissue but must not cause fibrous hyperplexia.

Vascular Prosthesis

Bacteria Interaction with Implants

Phase I: Reversible adhesion to the material

Phase II: Irreversible molecular bridging through surface adhesin compounds Phase III: Biofilm secretion (Exopolysaccharide matrix)

Hetrick et al., 2006

Biomaterial ?

Biomaterials Biocompatibility

Specific Bioactive Control of Cells and Tissues

Aufbau der Zelle

(b) Eukaryotic cell

Nucleus

Arbeiten unter sterilen Bedingungen

Mikroskopische Beobachtung der Zellkultur

Kultur von mesenchymalen Stammzellen

konfluent

subkonfluent

Cell physiology is regulated by reciprocal molecular interactions between cells and their surroundings

Lutolf & Hubbell, Nature Biotechn., 23, 2005

The Extracellular Matrix

- Extracellular Matrix an insoluble network of polysaccharides, fibrous proteins, and adhesive proteins that are secreted by animal cells.
- It provides structural support in tissues and can affect the development and biochemical functions of cells.
- The composition of the ECM varies with specific tissues.
- The ECM is dynamic.

Signals from the Extracellular Matrix Regulate the Biological Response of the Cell

Control by the Material Surface

Integrins are heterodimeric receptors with specifities to extracellular matrix proteins or other receptors

e.g. $\alpha 2\beta$ 1- collagen $\alpha 5\beta$ 1- fibronectin

Integrin signaling regulates: proliferation differentiation Motility Survival

Integrin Ligands at a Glance

Jonathan D. Humphries, Adam Byron and Martin J. Humphries

Schema der Aktivierung von Integrinen

A network of cytoskeletally associated proteins function as mediator of integrin mediated signal transduction

signalling outside in in inside out

Focal adhesions play a key role in integrin mediated signal transduction

Fokalkontakte in einer lebenden Zelle

From: Ruoslahti, E. 1997. "Stretching is good for a cell" Science 276:1345

CYTOSKELETON

In the cytosol, arrays of protein filaments form networks that give the cell its shape and provide a basis for its movements. Three main kinds of cytoskeletal filaments are

1. microtubules

Actin cytoskeleton

and Function of Bone Cells

CONNECTIVE TISSUE

The spaces between organs and tissues in the body are filled with connective tissue made principally of a network of tough protein fibers embedded in a polysaccharide gel. This extracellular matrix is secreted mainly by fibroblasts.

fibroblasts in loose connective tissue

Two main types of extracellular protein fiber are collagen and elastin.

Bone is made by cells called osteoblasts. These secrete an extracellular matrix in which crystals of calcium phosphate are later deposited.

Calcium salts are deposited in the extracellular matrix.

osteoblasts linked together by cell processes

extracellular matrix

Adipose cells, among the largest cells in the body, are responsible for the production and storage of fat. The nucleus and cytoplasm are squeezed by a large lipid droplet.

Classification of Bones

Bone Composition

Organic Matrix: *Collagen I etc.* Inorganic Matrix: *Hydroxyapatite*

Trabecular Bone

Cortical Bone

Microscopic Structure of Compact Bones

Bone Cells

Osteo<u>c</u>lasts

Osteoblasts are Mesenchymal Cells Osteoclasts Derive from Blood Cells

Bone resorption:

Osteoclasts bind to the matrix, dig holes and release collagen and minerals.

N-Telopeptids are released into the blood through the activity of osteoclasts.

Cortical Bone Remodeling Unit

Figure 7–9 Schematic diagram illustrating osteoclastic function. (From Gartner LP, Hiatt JL, Strum JM: Cell Biology and Histology (Board Review Series). Philadelphia, Lippincott Williams & Wilkins, 1998, p 100.)

Copyright © 2002 by W.B. Saunders Company. All rights reserved.

Knochenumbau in Knochenumbaukompartimenten (BRC)