Advanced Quantum Theory

WS 15/16

Prof. Dr. Dieter Bauer Dr. Yaroslav Lutsyshyn M.Sc. Julius Rapp

Problem Set 1 (due Monday, 19.10.2015 in the lecture)

(1.1) α -DECAY

(5 points)

Consider an α -particle of mass m and charge $Z_{\alpha}e = 2e$, escaping from a nucleus whose charge drops down to Ze during the process. The potential is modelled as shown below. For $x < x_0$ the attractive nuclear force dominates, creating a narrow potential well, while for $x > x_0$ the Coulomb repulsion $Z_{\alpha}Ze^2/x$ takes over.

(i) The semiclassical mean life time τ has been introduced in the lecture: $\tau = 1/R, R = (v/2x_0)e^{-\gamma}, v = \sqrt{2E/m}, \gamma = (2/\hbar)\int_{x_0}^{x_e} \sqrt{2m[V(x) - E]} dx.$ Show that for $x_e \gg x_0$ one obtains

$$\gamma\simeq\pirac{\sqrt{2m}Z_lpha e^2}{\hbar}\left(rac{Z}{\sqrt{E}}-rac{4}{\pi}rac{\sqrt{Zx_0}}{e\sqrt{Z_lpha}}
ight).$$

- (ii) Using the above results, estimate the mean life time for an α -particle of kinetic energy 4.2 MeV, which tunnels out of a nucleus with final Z = 90. Assume $x_0 = 10^{-12}$ cm.
- (iii)* ¹The decay law reads $N(t) = N(0)e^{-t/\tau}$ so that the half-life time $T_{1/2} = (\ln 2)\tau = 0.693 \tau$. Derive the TAAGEPERA-NURMIA formula

$$\log_{10} T_{1/2} = \alpha \left(\frac{Z}{\sqrt{E}} - Z^{2/3} \right) - \beta,$$

where $T_{1/2}$ is in years and *E* in MeV, and $\alpha \simeq 2$ and $\beta \simeq 30$ are constants. *Hint:* Set $x_0 = \ell_0 Z^{1/3}$ (why?) with $\ell_0 \simeq 2 \times 10^{-15}$ m.

cont'd overleaf

¹ Starred problems (*) are voluntary but may bring you extra points.

(1.2) VARIATIONAL APPROACH

(2 points)

Pretend you do not know the ground state wave function of the H atom (do you?). Determine an upper bound for the ground state energy by using $\psi(r) = e^{-\alpha r^2}$ as a trial function.

(1.3) ERROR ESTIMATE FOR VARIATIONAL EIGENENERGY (3 points)

Let $\hat{H}|n\rangle = E_n|n\rangle$ and $E = \langle \psi | \hat{H} | \psi \rangle$, where the trial state $|\psi\rangle$ is already normalized, $\langle \psi | \psi \rangle = 1$. We define the *error vector*

$$|R\rangle = (\hat{H} - E)|\psi\rangle$$

and assume that E_k is that true eigenvalue of \hat{H} which is closest to E. Prove that

$$E-\Delta \leq E_k \leq E+\Delta$$
,

where $\Delta = \sqrt{\langle R | R \rangle}$.