lecture 19.1.2012

we had so far:

binding in clusters and their appearances in mass spectra
 d) metallic bonding

today

- more to metallic bonding
- photoelectron spectroscopy
- trends in photoionization and detachment energies

The spherical jellium model: role of the potential like in *nuclear physics*

Explains the magic numbers of neutral alkali clusters : 2, 8, 20, 40, 58, 70, 92 ...

Also explains the magic numbers for divalent metals such as zinc or cadmium, at 4,9,10,17,20,29 ... atoms.

$$2(2l+1)$$

electrons

After: Mayer-Kuckuk, Kernphysik

the jellium model

compare: metal surfaces - resulting electron density

electron density n(z) shows oscillations (Friedel oszillations)
n(z) spills out beyond the ionic charge (electron spill-out)
spill-out produces a surface dipole

<u>Ursache der Oszillation:</u>

Elektronen mit festen Wellenvektor versuchen pos. Hintergrundladung abzuschirmen; hieraus folgen leichte Verschiebungen der einzelnen Atomlagen im Bereich der Oberfläche

Zangwill, page 58

jellium fingerprint in the mass spectra

Knight et al. Phys. Rev. Lett. 52, 2141 (1984)

M. Kappes, R. W. Kunz, und E. Schumacher, *Chem. Phys. Lett.* 91, 413(1982)

like a periodic table: the shell model for Na clusters

in Metal Clusters at Surfaces, KH Meiwes-Broer, Springer 2000

sub shells through distortion: the Clemenger-Nielsson model

deformations explain the sub-shell closings

Knight et al.

early direct evidence for electronic shells: ionization energies of Na clusters

H. Haberland: Cluster. in Lehrbuch der Experimentalphysik, W. Raith, de Gruyter, 1992

Small Magnesium clusters as another example for a jellium system. Now each atom contributes with two electrons

Electronic vs. geometrical shell Example: large Mg_N show both, electronic and geom. shells

Diederich et al., Rostock

how to measure the electronic structure? by photoelectron spectroscopy

technical challenge: extremely low target density as it is necessary to work with a *charged* cluster beam. Only charged clusters can be mass selected

Magnetic bottle electron spectrometer

in the limit of a strong gradient and a long drift area, the flight times of electrons with the same energy are independent of the emission angle. detection efficency of about 50 %

technical realization of a magnetic-bottle electron spectrometer

Aubildung 11: Schnitt durch den neuen Hochfeldmagneten

Calibration mag. bottle spectrometer with Au₁⁻

photoelectron spectra from Ag_N⁻

comparison with the jellium model

pronounced energy gaps after 8 and 20 electrons, but there are more gaps due to lifting of degeneracy

fine details of the electronic structure can be resolved

comparison PES with jellium calculations

Density of states from KS single-particle energy eigenvalues

G. Wrigge, M. Astruc Hoffmann, and B. v. Issendorff PRA65, 063201(2002)

Al₂₀ PES vs. calc.

in this case: mainly one isomer contributes

dashed curve: measured spectrum

Akola et al., PRB 62, 13 216 (2000)

close-lying isomers

here: all three isomers contribute to the experimental spectrum

PES on coinage metal clusters

chemically similar systems may have similar PE spectra. Exception: Gold, due to relativistic effects

> Hannu Hakkinen, Michael Moseler, Oleg Kostko, Nina Morgner, Margarita Astruc Hoffmann, and Bernd v. Issendorff, PRL 93 093401(2004)

Trends in photoemission threshold energies

generally:

- IPs <u>decrease</u> with increasing N
- electron detachment en.
 or EAs <u>rise</u> with increasing N

Ionization potentials (top, by R. Whetten) and electron affinities (bottom, Meiwes-Broer group) of Aluminium clusters

threshold energies: electron detachment

Cu_N⁻ PE thresholds rise with increasing cluster size

Taylor, Smalley, et al., JCP 96, 3319 (1992)

$Cu_N^- PES$

threshold energies increase with N

Taylor, Smalley, et al., JCP 96, 3319 (1992)

N-dependent shift of low-lying levels: 3d in Cu_N

Cheshnovsky, Smalley et al.

photoionization thresholds of neutral clusters

Na⁺ photoelectron spectra

Wrigge et al. PRA, 65, 063201 2002

DFT calculations Fennel et al., Rostock, measurements von Issendorff et al., Freiburg

Meiwes-Broer, Appl. Phys. A55 (1992) 430; also Bergmann/Schaeffer

generally:

- the IPs decrease with increasing N
- the EAs rise with increasing N

Parametrization:

$$IP(R) = WF + \alpha \frac{e^2}{R} \quad \text{with } \alpha = 3/8 \dots \frac{1}{2}$$
$$EA(R) = WF - \beta \frac{e^2}{R} \quad \text{with } \beta = \frac{1}{2} \dots \frac{5}{8}$$

 $\alpha = \beta = \frac{1}{2}$ corresponds to the charging energy of a jellium sphere, deviations arise from QM exchange and correlation

let us evaluate IP and EA simultaneously

$$IP(R) = WF + \alpha \frac{e^2}{R} \quad \text{with } \alpha = 3/8 \dots \frac{1}{2}$$
$$EA(R) = WF - \beta \frac{e^2}{R} \quad \text{with } \beta = \frac{1}{2} \dots \frac{5}{8}$$

 α - β is small

solve for WF:
$$WF_{cal} = \frac{1}{2}(IP + EA) + \frac{1}{2}\frac{e^2}{R}(b-a)$$

 $WF_{cal} \approx \frac{1}{2}(IP + EA)$

thus the work function should be the mean value of IP and EA!

differences between measured IP and EA and bulk values

Small or no differences hint at free electron (or: ideal metal droplet) behaviour Meiwes-Broer in Advances in Metal and Semiconductor Clusters, Vol. 1 M. Duncan, Ed., JAI Press Inc., 1993