Physik-Neubau ab 2014

neue Achse Campus Südstadt

Saarplatz

21.10.2011

Bibliothek und Mensa

Ulmenstraße

lecture 26.1.2012

we had so far:

- more to metallic bonding, jellium model
- photoelectron spectroscopy

today

- optical properties of metal clusters
- clusters in strong laser fields
- few more interesting features of cluster physics

end of the lecture

PES on coinage metal clusters

chemically similar systems may have similar PE spectra. Exception: Gold, due to relativistic effects

> Hannu Hakkinen, Michael Moseler, Oleg Kostko, Nina Morgner, Margarita Astruc Hoffmann, and Bernd v. Issendorff, PRL 93 093401(2004)

Meiwes-Broer, Appl. Phys. A55 (1992) 430; also Bergmann/Schaeffer

generally:

- the IPs decrease with increasing N
- the EAs rise with increasing N

Parametrization:

$$IP(R) = WF + \alpha \frac{e^2}{R} \quad \text{with } \alpha = 3/8 \dots \frac{1}{2}$$
$$EA(R) = WF - \beta \frac{e^2}{R} \quad \text{with } \beta = \frac{1}{2} \dots \frac{5}{8}$$

 $\alpha = \beta = \frac{1}{2}$ corresponds to the charging energy of a jellium sphere, deviations arise from QM exchange and correlation

optical properties through confined electrons

... schwingen gemeinsam im Laserlicht wie ein angetriebenes Pendel

photofragment spectroscopy on mass-selected silver clusters

Chem. Phys. Lett. 260, 428 (1996)

also see: Kreibig and Volmer, Springer

Lycurgus cup (400 AD)

Optical properties of small particles

color due to a small amount of gold and silver particles

King Lycurgus is dragged into the underworld by Ambrosia

"Labors of the Months" (Norwich, England, ca. 1480).

The ruby color is probably due to embedded gold nanoparticles

physics behind the optical properties: excitation of the electron cloud in a small particle

- Since the ion cores are much heavier than the electrons the positive charges stay more or less at their position when a light field interacts with the particle

- The electric field of the light moves the electron cloud out of the positive background
- Below the resonance the electrons move with the direction of the electric field
- At resonance the movement of the cloud has a pi/2 phase difference to the electric field.
- This is called the plasmon resonance
- Above resonance the phase is 180 degrees

Gustav Mie 1868-1957

born in Rostock

Gustav Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen Ann. Phys. 25, 377 (1908)

good book: C.F. Bohren and D.R. Huffman Wiley, NY 1983

$$\omega_{Mie} = \left(\frac{1}{3} \frac{e^2 n_o}{\varepsilon_o m_e}\right)^{1/2}$$

n₀: electron density

plasmon frequency of a small particle -Everything gets simplified when the size of the particle is much smaller than the wavelength of the light

- The relevant value is the size R compared to the wavelength λ of the light, i.e. R/ λ

$$\omega_{Mie} = \left(\frac{e^2 N_e}{\alpha \cdot m_e}\right)^{1/2}$$
static polarizability

trend with small alkalies

For decreasing cluster size the plasmon energy shifts to lower values. This is called the red-shift.

Reason: influence of the spil-out

$$\omega_{Mie} = \sqrt{\frac{n_{bg}e^2}{3m\varepsilon_o}} = \frac{\omega_p}{\sqrt{3}}$$

Mie – Plasmon

or: increasing polarizability

increasing size

polarizabilities of alkali clusters

Knight et al. Phys. Rev. B 31, 2539 (1985)

not all clusters are spherical, see last lecture ellipsoïdal shell model

Unlike an atom, the positively charged background can deform !

Nielsson model

not all clusters are spherical

Ellipsoidal shell model 1d

Quantum chemical calculations

- The ab-initio cluster structures are in first order well-reproduced by the ellipsoidal shell model.

- One can calculate the plasmon profiles more easily on the basis of this model.

how do we measure the plasmon profiles?

- with high-density targets we could measure the optical absorption

this example shows the intense Ag plasmon peak, seen by photoabsorption of Ag clusters deposited onto glass (trace: Ag NP's). Recent work by Ingo Barke, H. Hartmann, Stefan Bartling, et al. Aim of the project is to study the role of Ag clusters to accelerate photocatalytic processes.

 - in cluster beams we use photofragment spectroscopy: <u>step 1</u>: observe the intensity of the not exited (parent) cluster in the mass spectrometer

<u>step 2</u>: excite the cluster with a given photon energy, measure the decrease of the parent signal or the appearence of daughter signal <u>step 3</u>: repeat, for different photon energies

role of deformation

- In cluster ions the number of electrons is N-1, thus closed shells appear at $\rm M_{\rm N+1}^{+}$
- Ag_{9}^{+} and Ag_{21}^{+} are closed-shell clusters and only a single absorption line appear in the optical spectra.
- In Ag₁₁⁺ the prolate deformation of the particle results in a splitting of the absorption into two components.
- According to the ellipsoidal shell model the lower energy peak should have half the oscillator strength.

compare the optical spectra

sodium

silver

similar: giant resonances in atomic nuclei

- electrons in metal clusters and the nuclear particles are fermions. Both oscillate in the confining potential

- therefore the same model can be used in order to describe the optical properties, e.g. the random phase approximation (RPA)
- closed-shell nuclei also show only a single absorption
- in the nuclei however the excitation energies are much higher, i.e., in the MeV range

Fig. 99 Beispiele für Riesenresonanzen: a) In der Anregungsfunktion für (γ, n) -Prozesse an ¹⁷⁵Lu. Für deformierte Kerne ist der doppelte Höcker charakteristisch, da in der Deformationsachse eine andere Schwingungsfrequenz auftritt als senkrecht dazu [nach Ber 75a]; b) im Spektrum von unelastisch an Aluminium gestreuten α -Teilchen [Kis 76]

Mayer – Kuckuck p.237

nuclear shape isomerism : ¹⁸⁶Pb

Andreyev et al., Nature405 (6785) 430, 2000

Nobel prize in Physics 1963, for their work on the nuclear shell model

Maria Goeppert Mayer (1906-1972) Hans Jensen (1907-1973)

German-American

Hamburg

constant-density surfaces

for electron clusters and nuclei.

The density of the surface is 0.00125 atomic units (or scaled units for nuclei), which corresponds to 38% of the bulk density

Silver clusters: s- and d-electrons

complex situation in Ag clusters

Fullerenes and quantum dots

-Such absorption features can also be found in other small particles

- It is therefore not restricted to metal particles but occur also in particles like fullerenes or semiconductor quantum dots

- It turns out that we only need to know the optical properties of the material in order to calculate the optical properties

CdSe

quantum dots

technical application as fluorescent labels

response to strong laser pulses: clusters act as strong nano antennas

Gigawatt laser pulse

Pulse length: 100 femto seconds power densities up to 10.000 Gigawatts per cm²

clusters in intense laser fields: nanometer-sized plasmas far from equilibrium

simulated Coulomb explosion Na₅₅

atomic charge distribution from Coulomb explosion

the following material has not been discussed in detail. It demonstates further interesting issues of cluster physics

mechanism for the high absorption

plasmon-enhanced ionization

dual-pulse excitation of Ag_N@He-droplet

inner vs. outer ionization

after: Ch. Siedschlag and J M. Rost PRL 93 043402 (2004)

computer experiment: laser excitation of Xe clusters

Xe₁₄₁₅

on plasmon resonance: dynamic electron acceleration

field strenght for N = 500:

140 GeV/m

Surface-Plasmon Assisted Resonant electron acceleration in Clusters SPARC

Nano electron accelerator

attosecond electron bursts

numerical experiment

Fennel et al., PRL 98, 143401 (2007)

density-temperature plane

summarizing statements and few more features scaleable vs. non-scaleable regime

chemical reactivity of clusters

clusters in chemistry: Au_N catalysis

Scott Anderson

magnetic data storage

See: Thompson et. al., IBM J. Res. Develop. 44, 311 (2000)

already today: granular magnetic media for magnetic recording

IBM

Magnetism between atom and bulk

measure the magnetic moments by deflection in a Stern-Gerlach experiment

magnetic moments per atom of clusters in a beam

Billas, de Heer, Science 265, 1682, 1994

cluster magnetism with non-magnetic elements

Figure 1. Magnetic moments per atom for manganese clusters produced at 68K.

Knickelbein

magnetic enhancement by gold doping

clusters at surfaces

Cluster Physics and Surface Physics

metallic clusters on metal surface

Electronic properties of metallic nanoparticles as a function of size and shape

Tool: Scanning Tunneling Microscope

Quantum mechanical confinement phenomena in individual nanoparticles on a metallic substrate:

- Strong lateral confinement
- Interaction with substrate

atoms approaching surfaces: interactions

Newns-Anderson model

- *coupling strength* atomic and metal valence-band states
- *spatial overlap* atomic and metallic electron wave functions

cfr. J. Los *et al.*, Phys. Rep.**190**(1990)133. P. Lievens *et al.*, NIMB**135**(1998) 471.

clusters at crysatalline surfaces: own work

charge transport in the STM

differential conductance

see lecture of Ingo Barke

electron confinement to nanoscale Co islands

LDOS mapping & standing waves

Particle-in-a-box S = 6.5 nm² m^{*} = 0.40 m_e

 $\lambda = 1 \qquad E_n - E_0 = 30 \text{meV} \quad \lambda = 20 \qquad E_n - E_0 = 540 \text{meV} \quad \lambda = 45 \qquad E_n - E_0 = 1200 \text{meV} \quad \lambda = 60 \qquad E_n - E_0 = 1600 \text{meV} \quad \lambda = 80 \qquad E_n - E_0 = 2140 \text{meV} \quad \lambda = 95 \qquad E_n - E_0 = 2540 \text{meV} \quad \lambda = 1000 \text{meV} \quad \lambda = 10000 \text{meV} \quad \lambda = 1000 \text{meV} \quad \lambda = 1000 \text{meV} \quad \lambda = 1000 \text{meV} \quad \lambda$

theoretically demanding systems

example of deposited iron clusters mean diameter 9 nm

R.-P. Methling, V. Senz, E.-D. Klinkenberg, Th. Diederich, J. Tiggesbäumker, G. Holzhüter, J. Bansmann und K.H. Meiwes-Broer Eur. Phys. J. D **16**:173-176, 2001

Array of magnetic dots each containing 25 Fe atoms

clusters growth by self organization

subject of surface physics