
Problem Set 1 (due Monday, 21.10.2013 in the lecture)

(1.1) α -DECAY (6 points)

Consider an α -particle of mass m and charge $Z_{\alpha}e=2e$, escaping from a nucleus whose charge drops down to Ze during the process. The potential is modelled as shown below. For $x < x_0$ the attractive nuclear force dominates, creating a narrow potential well, while for $x > x_0$ the Coulomb repulsion $Z_{\alpha}Ze^2/x$ takes over.

(i) The semiclassical mean life time τ has been introduced in the lecture: $\tau=1/R$, $R=(v/2x_0)\mathrm{e}^{-\gamma}$, $v=\sqrt{2E/m}$, $\gamma=(2/\hbar)\int_{x_0}^{x_\mathrm{e}}\sqrt{2m[V(x)-E]}\,\mathrm{d}x$. Show that for $x_\mathrm{e}\gg x_0$ one obtains

$$\gamma \simeq \pi rac{\sqrt{2m}Z_{lpha}e^2}{\hbar} \left(rac{Z}{\sqrt{E}} - rac{4}{\pi}rac{\sqrt{Z}x_0}{e\sqrt{Z_{lpha}}}
ight).$$

- (ii) Using the above results, estimate the mean life time of an α -particle of kinetic energy 4.2 MeV, which tunnels out of a nucleus with final Z=90. Assume $x_0=10^{-12}\,\mathrm{cm}$.
- (iii)* ¹The decay law reads $N(t)=N(0){\rm e}^{-t/\tau}$ so that the half-life time $T_{1/2}=(\ln 2)\tau=0.693\,\tau$. Derive the Taagepera-Nurmia formula

$$\log_{10} T_{1/2} = \alpha \left(\frac{Z}{\sqrt{E}} - Z^{2/3} \right) - \beta,$$

where $T_{1/2}$ is in years and E in MeV, and $\alpha \simeq 2$ and $\beta \simeq 30$ are constants. Hint: Set $x_0 = \ell_0 Z^{1/3}$ (why?) with $\ell_0 \simeq 2 \times 10^{-15}$ m.

(1.2) VARIATIONAL APPROACH

(4 points)

Pretend you do not know the ground state wave function of the H atom (do you?). Determine an upper bound for the ground state energy by using $\psi(r) = e^{-\alpha r^2}$ as a trial function.

¹ Starred problems (*) are voluntary but may bring you extra points.