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Master Equation J

3.1
Markovian Stochastic Processes

Stochastic processes enter into many physical descriptions of nature. Histori-
cally first the motion of a heavy particle in a fluid of light molecules has been
observed. The path of such Brownian particle consists of stochastic displace-
ments due to random collisions. Such motion was studied by the Scottish
"botanist Robert Brown (1773 — 1858). In 1828 he discovered that the micro-
scopically small particles into which the pollen of plants decay in an aqueous
solution are in permanent irregular motion. Such a stochastic process is called
Brownian motion and can be interpreted as discrete random walk or continu-
ous diffusion movement. This topic is considered in textbooks about Statisti-
cal Physics [38,85,194,206,213] as well as in many books or monographs about
stochastic processes [6,25, 55,84,121, 156,160, 172,201,211,234].

The intuitive background to describe the irregular motion completely as
stochastic process is to measure values xi,xp,...,%p,... at time moments
ti,t3, ..., ty, ... of a time dependent random variable x(t) and assume that
a set of joint probability densities, called JPD-distributions S

Pn (xl,tl;.‘X'2, to; v Xn, fn) n=12,... 3.1)

exists. The same can be done by introducing the set of conditional probability
densmes (called CPD-distributions)
L —

Pn(xn/ tn | xn—lrtn—l;---;xlltl)/ n=23,... (3.2)

denoting that at time t, the value x, can be found, if at previous times

- ty—1,...,t1 the respective values x,41,...x; were present. The relationship
_——_———4

between JPD and CPD is given by

Pn+1(xlz tl/' e Xnt1s tn+1)
= Pn+1 (xn-l-l/ fnt1 l Xn,tn; ... X1, tl) Pn(xlr te Xn, tn) . (3.3
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This stochastic description in terms of macroscopic variables will be called
mesoscopic. Why? Typical systems encountered in the everyday life like gases,
liquids{ solids, biological organisms, human or technical objects consist of
about 102 interacting units. The macroscopic properties of matter are usu-
ally the result of collective behavior of a large number of atoms and molecules
acting under the laws of quantum mechanics. To understand and control these
collective macroscopic phenomena the complete knowledge based upon the
known fundamental laws of microscopic physics is useless because the prob-
lem of interacting particles is much beyond the capabilities of the largest re-
cent and future computers. The understanding of complex macroscopic sys-
tems consisting of many basic particles (in the order of atomic sizes: 10710 m)
requires the formulation of new concepts. One of the methods is the stochas-
tic description taking into account the statistical behavior. Since the macro-
scopic features are averages over time of a large number of microscopic in-
teractions, the stochastic description links both approaches together, the mi-
croscopic and the macroscopic one, to give probabilistic results. Monographs
(recommended for physicists and engineers) devoted to stochastic concepts
are mainly written as advanced courses on Statistical Physics like that by Josef
Honerkamp [85] and on Statistical Thermodynamics by Werner Ebeling & Igor
M. Sokolov [38], or well-known textbooks on Stochastic Processes, see e. g. [6]
by Vadim S. Anishenko et al., [55] by Crispin W. Gardiner, [84] by Josef Hon-
erkamp, [234] by N. G. van Kampen.

Speaking about a stochastic process from the physical point of view we al-
ways refer to stochastic variables (random events) changing in time. A real-
ization of a stochastic process is a trajectory x(t) as function of time. Here we
introduce a hierarchy of probability distributions

pn(x1, b5 X0, b5 0 x,,‘,'t,,) dxidxy ...dx,, n=12,..., (3.4)

S 162

where py(x1, t1)dx; is known as time dependent probability of first order to

measure the value x; (precisely, the value within [x1, x; + dx;]) at time ¢,
pa(x1, 415 %5, ty) is the same probability of second order, up to higher-order
joint distributions pn(x1, t1;...; Xn, tn)dx1dx, . .. dx, to find for the stochastic
variable the value x; at time moment ¢;, the value x, at time #, and so on.
Only the knowledge of such infinite hierarchy of joint probability densities
Pn(x1,t1;. .. Xn, #n) (expression (3.1)) with n = 1,2,... gives us the overall
description of the stochastic process.

A stochastic process without any dynamics (like a coin throw or any hazard
game) is called a temporally uncorrelated process. It holds that

pa(x1,t1; %0, b2) = p1(x1, 1) p1(xa, 1), (3.5)

if random variables at different times are mutually independent. It means that
each realization of a random number at time #, does not depend on previous
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time 1, i. e., the correlation at different times #; # #; is zero. Such a stochastic
process, where function p; (x1, 1) = pi(x) is the density of a normal distribu-
tion, is called Gaussian white noise. The Gaussian white noise with its rapidly
varying, highly irregular trajectory is an idealization of a realistic fluctuating
quantity. Due to factorization of all higher-order joint probability densities
the knowledge of the normalized distribution p1(xy, f1) describes the process
totally.

Now we are introducing dynamics via correlations between two different
time moments. This basic assumption enables us to define the Markov pro-
cess, also called Markovian process, by two quantities totally, namely the first-
order p1(x1,t1) and the second-order probability density pp(x1,t1;%p, t2), or
equivalently by the joint probability p; (x1,#1) and the conditional probability
p2(x2,t2 | x1,#1) to find the value x, at time #,, given that its value at previous
time t; (#; < f3) is 1. In contradiction to uncorrelated processes (3.5) dis-
cussed before, Markov processes are characterized by the following temporal

relationship ~——— < ‘

pa(x1,t1; %2, t2) = pa(xa, talx1, t1) p1(x1, ta) - } ; 3.6)
The Markov property

Pu(Xn,tn | Xn—1,tn—1;.. 521, t1) = p2(%n, tn | Xn—1,tn—1) (3.7)

enables us to calculate all higher—order joint probabilities p, for n > 2. To
determine the fundamental equation of stochastic processes of Markov type
we start with the third—order distribution (#; < t; < t3)

p3(x1,t1; %2, t2; X3, t3) = pa(xa, t3 | X2, t2; %1, t1) pa(x1,t1; %2, t2)
= pa(x3,t3 | X2, t2) p2(x2, b2 | 21, t1) p1(x1,t1)  (3.8)

and integrate this identity over x, and divide both sides by p1(x1,t1). We
get the following result for the conditional probabilities defining a Markov
process

l pa(xs, ts | x1,t1) = / p2(x3,t3 | x2,t2) pa(xa, t2 | x1,t1) dx2, i (3.9)

called Chapman—Kelmogorov equation.

As already stated the Markov process is uniquely determined through the
distribution p1(x,t) at time ¢ and the conditional probability p,(x', ' | x,t),
also called transition probability from x at  to x’ at later #/, to determine the
whole hierarchy p, (n > 3) by the Markov property (3.7). Also these two
functions cannot be chosen arbitrarily, they have to fulfill two consistency con-
ditions, namely the Chapman-Kolmogorov equation (3.9)

(| ) = / pa (X | X ) po (| x 8 Ay, (3.10)
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the Markov relationship (3.6)
R e e U

pi(, ) = /pz(x’, t'|x,t) p1(x, t) dx, (3.11)
and the normalization condition
M
/ pr(x, ) dx =1. (3.12)

The history in a Markov process, given by (3.7), is very short, only one time
interval from ¢ to ' plays any role. If the trajectory has reached x at time ¢, the
past is forgotten, and it moves toward x’ at ¢ with a probability depending
on x,t and x/,# only. The entire information relevant for the future is thus
contained in the present. A Markov process is a stochastic process for which
the future depends on the past and the present only through the present. It
has no memory [201]. In an ordinary case where the space of states x is locally
homogeneous this gives sense to transform the Chapman-Kolmogorov equa-
tion (3.9) in an equivalent differential equation in the short time limit # = ¢+ T
with small 7 tending to zero. The short time behavior of the transition prob-
ability pa(- | -) should be written as series expansion with respect to time L( L(_,\IZ er ‘[ _

interval T in the form -
L-; V\“\Ah‘ (bgo‘—h
Pa(xt+7 | 2,8 = [1— w(x, £)7] 6(x — 2") + Tw(x, ¥, £) + O() . (3.13) Y,

The new quantity w(x, x”,t) > 01is the transition rate, the probability per time
unit, for a jump from x” to x # x” at time ¢. This transition rate w multiplied
by the time step 7 gives the second term in the series expansion describing
transitions from another state x” to x. The first term (with the delta function)
is the probability that no transitions takes place during time interval 7. Based
on the normalization condition

/ palx,t+ 1| 2", t)dx =1 (3.14)
it follows that
W(x, 1) = / w(x’, x, t)dx" . (3.15)

The ansatz (3.13) implies that a realization of the random variable after any
time interval 7 retains the same value with a certain probability or attains a
different value with the complementary probability. A typical trajectory x(t)
consists of straight lines x(t) = const interrupted by jumps. An illustration is
presented in Fig. 3.1 .
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Fig. 3.1 Sketch of time evolution of a stochastic. one—dimensional vari-
able x(t). The stochastic trajectory consists of pieces of deterministic
mation interrupted by jumps.

0

From Chapman-Kolmogorov equation (3.9) together with (3.13) we get
pﬁmt+1]xﬂﬂ)=i/pﬂnt+rlxmﬂpﬂxﬂt|ﬂJﬁdﬂ’
= / 1 —@(x, )] 6(x — N po (X", ¢ | x/, ') dx"
4 / Tw(x, 5", Opa(x",t | 2, ¢)dx" +O(2) . (3.16)

With (3.15) and after taking the short time limit T — 0 one obtains the follow-
m

ing differential equation
’ Aqu (\'\/a&m{/

%Pz(x,t | %, #) = / w(x, ", ) pa (x| ¥, ¥) dx"

- /w(x", x, t)pa(x, t| X, ¢)dx" .

In order to rewrite the derived equation in a form well known in physical
concepts we get after multiplication by p;(¥/,#') and integration over x’ the
differential formulation of the Chapman-Kolmogorov equation

RN

0 7 ! . } ?aj/(ff ad
=p1(x,t) = [w(x, ', )p1(x, t)dx' — [w(x, x,t)p1(x, t) dx’ \l (3.18)
\i. / / , Gle-d Oy

called master equation in the (physical) literature.

The name ‘master equation’ for the above probability balance equation is
used in a sense that this differential expression is a general, fundamental or ba-
sic equation. For a homogeneous in time process the transition rates w(x, ¥/, t)
are independent of time ¢ and therefore w(x, x’,t) = w(x,x’). The short time
transition rates w have to be known from the physical context, often like an
intuitive ansatz, or have to be formulated based on a reasonable hypothesis
or approximation. One of them is Fermi’s golden rule originating from micro-
scopic quantum theory [194]. With known transition rates w and given initial
distribution p;(x, ¢ = 0) the master equation (3.18) gives the resulting evolu-
tion of the probability p; over an infinitely long time period.
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The well-known master equation can be written in different ways. Be-
sides the continuous formulation with one variable x the generalization to
the multi-dimensional as well as discrete case is obvious. Instead of p1(x,t)
with the high-dimensional probability vector P(x,t) = P (x1, %2, -+ , Xy, t) we
may write the master equation in the discrete form (with summation instead

E’Yw\\" 1 Weus oy, ﬁ integration) as

h“u’%‘“”{?‘) %P(Lt) = ) {w(x 2 )P, t) —w(x, x)P(x,t)} . (3.19)

xl#x

Generalizations of the master equation has been developed by Honerkamp
and Breuer [85], Montroll and West [165] and others. To perform stochas-
tic simulations of complex systems like piecewise deterministic Markov pro-
cesses, stochastic formulation of fluid dynamics or reaction-diffusion equa-
tions the so-called many-body or multivariate master equation have been in-
troduced. To describe quantum random systems the master equation is usu-
ally called Pauli master equation.

-1 [ —
. ( The Master Equation
- "”‘""""’“"’“"“’"""‘"‘"‘—'*\

Thebasic equation of stochastic Markov processes, called master equation or ex-
plicitly forward master equation, is usually written as gain-loss equation (3.18)
for the probabilities p(x, t) in the form
\
Bp_g:,t_) = / {w(x, X )p(x',t) —w(x', x)p(x, 1)} dx’ . (3.20)
This very general equation can be interpreted as local balance for the proba-
bility densities which have to fulfill the global normalization condition

/ plx,tydx =1 3.21)

at each time moment £, also at the beginning for the initial distribution p(x, t =
0). The linear master equation (3.20) with known transition rates per unit time
w(x, x') is a so-called Markov evolution equation showing the relaxation from
a chosen starting distribution p(x, t = 0) to some final probability distribution
p(x,t — o0). The linearity of the master equation is based on the assumption
that the underlying dynamics is Markovian. The transition probabilities w do
not depend on the history of reaching a state, so that the transition rates per
unit time are indeed constants for a given temperature or total energy.

If the state space of the stochasfic variablé is a discrefe one, often consider-
ing natural numbers within a finite range 0 < n < N, the master equation for




